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Expression for the Drag Force

Idealised Case

A body of mass m moves with speed V through a media, of densityp,

at rest° In an interval of length _ t, it captures the particles origi-

nally within a cylinder of length V _ t, and cross section essentially

equal to the cross section of the body (A, say). Thus the accreted

mass is AV $ t_, and if the increase in velocity is _ V, we must have

mV -- (m + AV _t/O) (V + _V),

whence

Fm_ = - AV 2 • (1)

Practical Assumption

This derivation takes no account of the thermal motion of the me-

dium. However the force (P) is found to be very nearly proportional

2 except for very small velocities, and we can put with close
to V 1

accuracy

2

where CD, which is called the "drag coefficient," is close to 2 if

the mean free path in the medit_n is large compared to the dimensions of

the body, becoming nearer to unity if the reverse is the case.

If the satellite is rotating steadily, the components of the force

which are perpendicular to the relative velocity will cancel out almost

entirely° If the rotation is about the axes of greatest moment of in-

ertia, the mean value of A will remain constant. Ionisation of the at-

mosphere is not likely to be important, since it is less than 5_ at



Expression for the Drag Force
3.

evaluated at perigee, where the density is much greater than elsewhere

on the orbit. Thus we may effectively regard F as constant.

Then the drag force is

P_=-_cD--A/°vv=-½cD--A__ (_)

The component of V in the direction of the radius vector is
m

V ° r v • r

r r
(using (3))

= v sin X,

where -_- - X is the angle between the velocity and the radius vector.

The component of V in the transverse direction in the orbit plane is

V ° (hx r)Iv2r 2 2 2 1_r = - (v • r) - ( ____x r) - v r I (hr)

(us ing (3) )

_ 2 2 2 Q i I / (hr)
= v r cos X - hr 2 cos

= v cos X - _ r cos i. (since h = rv cos X)

The component of V in the direction of h is

.v•h _, (rx _)
h h (us ing (3) )

: o_..> <r
_owQ° r=O rsin

= Q r sini sin(O0 + f),

.... 4 3 8
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Expression for the Drag Force
.

heights of less than hO0 kilometers. In any case a change of CD with

time will not affect many of the results.

Effect of Rotation of the Atmosphere

This effect is small, so a simple assumption is Justified. Let us

suppose that the atmosphere rotates with the same angular velocity as

the Earth, _ , say. Then its velocity at the point _, where the origin

is at the Earth's centre, is O x r. If the satellite is at r with

velocity V-, its velocity relative to the atmosphere is _, where

v_=v- Ox__° (3)

Thus(writingV = IV_l, v = Iv_l, etc.)

v2 = v2 - __.(___x z)+ ( Q_x z)2

2=v - 2Q'_+(_ xz) 2

20h cos i + _2r2cos2 _ ,

where h = Z x [, is the angular momentum per unit mass of the satellite

about the Earth's centre, _ is its declination, and i the inclination

of its orbit to the equator. We put

v2 2 (4)= v F,

2_h cos i _2r2 cos2_ (4a)
so that F = 1 - +

2 2
V V

The third term in F may usually be neglected, being less than about

1/250, and the second term, which is of the order of 1/15, may be

 il.
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Expression for the Drag Force

where 60 is the argument of perigee, and f the time anomaly. Also

Q • V = _ V sin i cos ( 00 + f . X) ,

SO

V • h

= _r sin i cos ( O0 +f).

A

Therefore if __ _ and h are unit vectors in the radial, transverse, and

normal to orbit directions respectively, the drag force may be written

P = - ½ CD A p_-Fv 2_sin __ + (cos X -

D A

r cos i ) s
V

+

_r sin i

V

^

Since v = v(sin X r + cos X _)_ _ , this may be written

mkgv I v- r cos i s + r sin i cos ( + f)m

c÷V 
where k = , (7)

m

m being the mass of the satellite.

The Effect of the Tan6ential Component

The Equation of Motion

The component of P parallel to the velocity _ is the largest part.

equation of motion, considering only this part, is

= - grad V - ½ k/Dvv_ , (7a)

439
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The Effect of the Tangential Component 5.

where V(r) is the gravitational potential.

The Energy

If E = ½v 2 + V_ then

_---dt= v_ ° -v+ -v ° grad V = - ½ k/Ov 3. (8)

ix.
Now V

= -_ _ R_

ness, and so

where R is the disturbing function for the oblate-

E=½v - -Ro

o a -,R = - ½k V3o

The change of the major semi axis _ due to the drag is therefore

' k _ a2v J_

/

(9)

The Angular Momentum

Ifh= rxv ,

dh

--= r x r = r x grad R - ½ k_0 vhdt ....
/

The change due to the drag is therefore

44,0



The Effect of the Tangential Component 6.

dh
-- 1

d-_= - _ k_ vh . (I0)/ --

Therefore the direction of h is unaltered, and so the position of the

orbit plane is unchanged by the tangential component.

Since h / _a(1 - e2) l, wlth (9),

2

& 1 av _ i)
= -_-_k/O(l- e2) v (/U_

1 kxg(l . e2) v a
='_ / (_- l). (ll)

In terms of the eccentric anomaly E,

a--- k na2 (1 +e c°s E) 3/2p 1 e cos E '

and e = - k ha(1 - e2) cos E (1 + e cos E)1/2

P (l -e cos E)312 "

(9a)

(lla)

Hence the secular rates of change are

27T

-;- 2-"_'1 /o '/0 (1 + e c°sE)3/2(1e cos" = - ina2 _)1/2 _ '

and e =- 2---_"kna(l - e2) cos E

0

e cos E

(12)

dE . (13)

King - Hele uses the quantity x = ae, whose secular rate of change

is therefore

- _kna

27_" i

X_ (e + c°s E) (1 + e c°s El__onq _.

o / _- I
. (14)

ill



The Effect of the Tangential Component 7.

King - Hele's First Order Theory of the Orbit

In polar coordinates (r3 e) in the fixed plane of the motion the

equations are

_ - r@2 = - 7_ 2 - ½ kpv 2 sin X,
r

(]-5)

id (r%) ik_ 2r d_ = = _ v cos X •
f

i r2
Putting u = r ' and h = e , and eliminating the time as independent

variable, we obtain

d2u + u f_h2 (16)dO2

and _= - _ (17)
2u 3 °

We use the Poisson method of succesive approximation, putting

u = u0 + _ iu + _2u + • • •

and h =ho + S 1h + ....
(].8)

Unperturbed Solution

--+_o ho =X'70'saY

dh o

d@

(19)

4 42
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The Effect of the Tangential Component 8.

whence ho, and therefore PO ' is constant, and we obtain the equation

of the ellipse

i _i + e0 cos (e _COo)I ' (20)u°- Po

where e0 and oO 0 are disposable constants.

First Order Solution

The equations are

d2 81u
+ _ iu = - _ SI h (21)

d@ 2 h03

d _lh k/_ o

and de - 2u03 ' (22)

where v0 is v computed for the unperturbed orbit (20). From these we

obtain

d3 _ lu d _ iu /%__ V0
+ = = g(e- oD 0) , say.

d@3 d8 h03_

(23)

A particular solution is

d (8 ;eiu) --

%
g(@' - tOO) sin (e- e') de',

whence

44.3



The Effect of the Tangential Component

8 _'1

@0 80

e

de '

dS' g(8' - COO) sin (e"- e')

d@" g(@' - bOO) sin (e" - e')

g(e' - _Oo)_l-cos (e-e,)}. (24)

i

The equations (12) and (14) may also be derived from this by

considering the change in u from perigee to perigee, which leads to

the expression

27Y

Aq : - q_/ df_f) (I- cosf)
J 0

(25)

for the change in one period of the perigee distance q and also the

change in u from apogee to apogeej which leads to

2__r
Aq' = - q,2/ df g(f) (I + cos f)

J 0

(26)

for the change in the apogee distance q' Then transforming from the

true anomaly f to the eccentric anomaly E, and use of a = ½ (q + q'),

and x = ½ (q' - q), leads to the previously found forms of equations

(12) and (14).

The Form of the Atmosphere

We ass_e the surfaces of constant density to be ellipsoids of

revolution, with the Earth's rotational axis as axis of symnetry. If

,._" 444
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The Form of the Atmosphere 10.

we assume the ellipticity of each ellipsoid to be the same as that

of the geoid (King-Hele gives the value 0.003353)_ then at a height of

300 kilometers our ellipsoids remain within 1 kilometer distance of the

ellipsoids in which the ellipticity varies to maintain hydrostatic

equilibrium° Thus the polar equation of each surface may be written

C

r = r0 _ 1 - g sin 2 _ + 0(g 2)
, (27)

where _ is the declination. Along a given radius vector, the density

is nearly proportional to exp (-r/H), where H is the "scale height°"

If the perigee distance changes "by more than about lO0 kilometers, we

must take account of the variation of H with altitude3 but in fact this

distance usually changes by less than 60 kilometers in the first 95% of

the satellite's lifetime°

We will not consider the variations of density with time. Such

changes do occur_ with the period of the Sun's axial rotation, with

that of the Earth's rotation (due to differences of day and night),

and the sunspot cycle. These changes do not however affect the rela-

tive changes of a and x.

Thus we will take the density as

/_=/0exp _ _r(1 + _ sin2 _)_ _

where _= 1/H.

King - Hele's Treatment of the Secular Changes

(28)

Confining ourselves to small orbital eccentricities, we use the

expansions

- 445



King _ Hele's Treatment of the Secular Changes
Ii°

,,(i+ e cos E) 3/2
= I + 2e cos E + 3/4 e2 (I + cos 2E) + O(e 3)

(i - e cos E) I/2

and (cos E + e)

!

+e+e e+ e
+ I1/8 e2 cos E + 1/8 e2 cos 3E + O(e3),

Also s _ = _ sin 2 i 1 - cos 2( cO + f)

= _ sin 2 i I - cos 2( tO + E) + e cos (2 uO + E)

- e cos(2_ + _) + 0(2 )}

Hence the equations (12) and (14) yield, using also r = a(1 - e cos E),

a = - 2_ - na2k_o exp (- a)

2_

_ e___e _o__._[_÷_e_o__÷
0

3/4 e2(! + cos 2E) _ cll + e cos E - cos 2( tO + E) - 3/2 e cos(2 t_O4 E)

1/2 e cos (2 _D + 3E)} + O(e3 c e2)] _ (2a)

27r

-- ,LI na2k /O 0 exp (-//_ a) _ dE exp ( /_ ae cos E) [cos E +
and x = - 2_

0

3/2 e + i/2 e cos 2_E + 11/8 e2 cos E + I/8 e2 cos 3E -

c _cosE - 1/2cos(2_o + _.)- I/2cos(2 _o+ BE)+ e -

i/2 e cos 2 uJ - e cos 2( _ + E) + 1/2 e cos (2 cO + 4E)} +

O(e 3, ce 2) , (3o)

44_
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King _ Hele's _Teatment of the Secular Changes 12o

where c = ½# a 6" sin 2 i, which is usually_less that 0°2°

Bessel Functions of Imaginary Argument

The functions In(Z) = i"n Jn(iZ) may be shown to satisfy the generat-

ing relation

I
n_,-

(31)

from which, putting t = e ? (i _), we see that I must be
n

(z) = # e_In 2-_-- ( -in ]0 ) exp (Z cos _ ) df
1

27Fi"-

I I cosn
"2-_- j 0

•exp (Z cos f ) df

after a little rearrangement.

(32)

Also we see that

2_

e_ (z cosp
0

) sin n_ d_ = 0 (33)

So, putting # ae = Z = ax, equations (29) and (30) yield

= - na_9oeXp (#a) Ilo + 211e - loC + 3/4 (I0 + 12 ) e2 +

fI,,+ (3/2I_- 1/2Io)e2c cos260+ O(e3ca2)] , (34)

• 44'



King _ Hele's Treatment of the Secular Changes 13.

andS=- na_/0 exp(# a)IIl + I/2 (310 + I2)e- IlC +

1/8 (llI 1 + I3) + (I 2 - I0) ce + I/2 (I 1 + I3) + (I 0 - I4) e cos 2 uO+

O(e3_ ce2)] o (35)

Dinsion gives

d-_ I0 I0 I2 I2 h ) c cos e60 +

_= q+ Re - ½ (3q+q) e + (_-½- ½i I

O(e2 ce)
_, (36)

Phase I

We have the asymptotic formula

exp Z I _ i 4n2 - 12In(Z)'_J _Z i' 8Z

+ I( 4n2 . l_)i ( 4n2i - 2 2)

2' (8z)2

as z _ _, (37)

ae

which is found to be useful if Z >3, that is if -_3. Now since

H is about 50 kilometers within about 50%3 and a is about 7000 kilometers,

this meszls that this formula is useful if the eccentricity is greater

than about 0.02. The part of the motion for which this is true is

called "Phase I" by King -Hele. Use of this formula in (36) gives

da Io 1 3 ....+ __e2 I ,I I _C 2 ce) (38)

= II #a 2 #2ax _X _2X2 cos 2 cO + e(e ,

Differentation of (31) with respect to Z, and equating coefficients

gives

44-_
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King - Hele Treatment of the Secular Changes 14.

n i + (39)_--- _ (In_ 1 In+ 1) ,

and differentation with respect to t similarly gives

nIn = ½ Z(In_l " In+l ) ' (40)

and hence, on eliminating In+l,

dI

n + n (41)_'- _ In ffiIn_ I-

With n = l, this gives

Io i i dIl

This enables equation (38) to be integrated to give (omitting the term

in cos 2_o for the moment)

a ® a0 = T _ (Xo)+_n ii(#Xo )

x-x o
+

2

$ _ (xo)x + x ae5 ae
.... o(--, , )

2_ 2ao # _ 3x3
, (_3)

suffix zero indicating initial values.

gives, noting that the perigee distance q is given by q ffia - x,

q - % = - ½_ (1 - _ (;--) ÷ (eo - el ...._oee °

H3
+ o(ae5,-_,).

a e

Using the expansion for II, this

-l+

(44)

449



King - Hele Treatment of the Secular Changes 15o

Returning to the term in cos 2 cO , we note first that if we sub-

stitute (_3) into (35) we obtain, for the dominant term,

• K

X

where K is a constant° Thus

2 2.
x = x_ _ 2Kt + _ o o

U

We F_ow that, from the oblateness effect, the most important change

of CO with time is a l_near increase or decrease, according to whe<-

ther the inclination is greater or less than the critical value° In

either case_ we may write to a first approximation_

CO = A + PDC 2

where A and B are constants.

We may now include the cos 20o term in our result, Integration

of this term leads to the addition to the right hand side of equation

(44) of the terms

xo
_ 2cH2 (cos 2co - _cos 2 cO)

x0 0 x

- li.c 7-_H2-_.IB i/,7--_" cos A 2x0_ IBI/_

B sin A sin (_7_) d$

+ _ ,,>XoVlBi/7-c
(44a)

45O
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King - Hele Treatment of the Secular Changes 16.

Since the orbital period is given by T/T 0 -- (a/a0)3/2, a relation simi-

lar to (_4) may easily be derived between T, e, TO, e0 and H.

This relation, and the complete expression (44), have been used

by King - Hele with success to derive H from the known values of q,

T and e of a satellite's orbit at two stages in its lifetime, and

from such determinations he has studied the variation in H with altitude

and discovered its large changes as the sunspot cycle progresses.

Phase 2

For e < 0.02, we use the relations (39) through (42)to put:equatlons

(36) into the form

da i I dll
_:-75 + :i_ 1 _I :° I

o.88
--E--c cos (A + BH2Z2) + O(e2, ec),

and from this is derived, by integrating and putting q = a - x,

[ Sz:::!z,t/+:q " ql = " H (i - _) _n[ ZII(Z) al [ II(ZI)

.-IBIH2Z2

-z:+z+o.4_IcosAj 'cos/a,I_IH2Z_--:

Z:o(Z)_

-sin A _ tBI H2Z_." "d(I)
+ O(e2, o.o&) ] (45)

where the suffix "i" indicates initial values in phase 2.

451
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King - Hele Treatment of Secular Changes 17.

For a treatment of orbits of high eccentricity, see King - Hele's

paper III o

The Effect on the Apse_ Node_ and Inclination Includin 6 the Non -

Tangential Components

We will now take account of all of the components of the drag force.

If we write R, S, and W for its components per unit mass in the radial,

transverse and normal to orbit plane directions respectively, then

from (6) we have

and

R = - ½k2v e sinX,
/

S = - ik_(v 2 cos X - vQr cos i),

W = - ½k_ vOr sin i cos ( CO + f).

(_6)

The equation for the apse longitude is (see e .g. Brouwer and Cle-

mence, p. 306),

dUO b cos f r(2"+ e cos f)
d-'_-= 2 R + nabe

na e

sin f S + 2 sin2 (½ i) d_

= - k 9resin f _ 1 - ½ r2 QhcOs i

+ 2 sln 2 (I i) d-_t ,

(2 + e cos f)}

(47)

after same reductions, in2which we make use of the relations rv cos X =
na

h = nab, and v sin X = -_- e sin f. The first term is an odd function

of _ and so its mean value over an orbit is zero. The equation for

the node longitude is

452
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The Effect on the Apse, Node, and Inclination 18.

d_ r sin (00+ f) i _ Q r sin 2( CO + f)
d_ = nab sin t W =°W nab (_8)

This is also an odd function of f, and we conclude that the contri-

butions of the drag to the secular motions of both the apse and the

node are zero.

The equation for the orbital inclination is

di ,rco_(_0+f) _kn__bV_r2d-_ = nab W = - _ sin i cos 2 ( cO + f) , (49)

which clearly has a strictly negative secular part, whose leading term

in expansion in powers of e is

- ¼ k_o a _ sin i.exp (-_a) IO. (_o)

453
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T._.eDominant Features of the Long Period Li_agati_ns of the Tro0an

Minor Planets

The problem of three bodies possesses a class of solutions in which

the bodies move so that the triangle they define is always equilateral,

as was shown by Lagrange,, This type of solution found application

in the study of the solar system with the discovery of minor planets

moving so as to appoximate to such a configuration with the Sun and

Jupiter, These planets are known as the "Trojan Planets," and are

named after heroes of the Trojan War. The present treatment seeks to

present the long period features of motion in the vicinity of the equi-

angular triangle configurations, making_use of the elements of an oscu-

lating orbits and methods taken from the work on the motion of these

planets of W.Mo Smart (Memoirs of the Royal Astron. Sot., Volume 62,

Part 3_ 19i8)_ and HoGo Hertz (A°Jo, Volume 50, p. 121, 1943),

taking into account only the gravitational attractions of the Sun and

Jupiter, which of course dominate the motion.

The Equations of Motion

Consider the system comprising the bodies S and J, of masses

and. mj, and position vectors _S and _j in an inertial frame,

and a third body P with position vector _ p, which has no attraction

on the other two. The equations of motion are

(r')3

(r,) 3
(_)

ot

wherer'= IPj-_sl ,r= I_sPPI,

4 5 6

!

I

I
I

I
I

I
I
I

I
I
I
I

I
I

I

I
!

i/



_ne Equations of Motion 2.

We use the relative position vectors

and the first two of (I) give

_r= - , (3)

where # = _(m S + mj). (4)

This is the equation of the Keplerian two-bodyproblem, and we

suppose that its solution is an ellipse of major semi-axis a' and

eccentricity e' which is the orbit of J relative to S. The first and

third equations give the equation for the relative motion of P and

S as

-- r3 Z_ (r')3

Now in the equiangular triangle configuration, the orbit of P

relative to S is identical in size, shape and period to that of J

relative to S, and therefore is a solution of the equation

(_)

I

I

I

I

I

I

r = r3 (6)

So we rewrite (5) in the form

r = r3 + grad R, (7)



The Equations of Motion

where R = /_ m'(
A (r') 3

with m_ = -

ms+mj

,

(8)

(9)

The solution of (6) will be regarded as the osculating orbit of P,

and R is therefore the distrubing function for the action of J on P.

Now if d is the angle subtended by P and J at S, we have

r ' r' = rr' cos_ , and

these we find that

+ (r') 2 - 2rr' cos_/ . From

and

DR_)r=/6 £m, I _--IA 3 (r - r' c°sO') + ir2 c°sO_I(r,)2 '

R m' I rr' rD(cosdY:/_ A3 (r,)2

Both of these vanish if S, J and P form an equiangular triangle,

since then r = r' = A , and _ = 7_/3. Therefore, since R only de-

pends on the position of P through its dependence on r and cos _/ ,

grad R vanishes while such a configuration holds, and the motion of

P is governed by equation (6)° But one solution of this is the ellip-

tical orbit identical with that of J, but oriented at 7_/3 to it in

such a way that the equilateral configuration of SJP is always pre-

served, and this is therefore a solution of the original equations,

confirming Lagrange's result for the case of the three body problem

here considered°

We suppose the motion of P to take place entirely in the plane

of the orbit of J, in which the time longitudes of P and J are

$ •
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The Equations of Motion 4o

andUd',respectively,+ndtheirmeanlongitudesareI +n_I ',
respectively. Then if the elements of the osculating orbit of P are

a, e, cO , 6 , we use variables

_a = a - a',

+:A- A',

k = e cos t,O

(IO)

and h = e sin CO ,

which satisfy the equations, derived easily from the Lagrange equations

for the elements,

d (Sa) 2 _R
d_ = na 8 _ '

d$ n - n' 2 _R B
dt = na _( _ a) + --2na2

dk A _ R B 8R

d-K = 2 _h 2 k 8-_ '
na 2na

DR 3R)_-_+ h-_ ,

(11)

and dh
d-T=

A _R B BR

2 8k --hna 2na 2 _ '

2
where A =_i - e = 1 - ½<k 2 + h2) + 0(k 4, h_, k2h 2) (12)

and
B = e_IVl- e2- i + e21 = i- _(k2 +h 2) + O(k 4, h4, k_ 2)

.. + " 4S9

(13)



The Disturbing Function ,

The disturbing function takes the form

I I r 1 I--_' A (r') 2 oo_( _ - _') - •
(14)

We expand it, making use of the expressions in which _ = _- tO is

the mean anomaly,

2r=a l+½e

r cos ( _- tO) =

rsin( _ - UD

e cos L ½e cos 2_ +0(e 3

a[- 3/2 e + (1 - 3/8 e2) cos _ + ½ e cos 2L

+ 3/8 e cos 31 + O(e 3) ,

) = a { (I - 5/8 e2) sin _ + ½ e sin 2_ +

3/8 e2 sin 3_ + O(e3)_
2

3

and their counterparts for J. Making use of these expansions, we find

for the secular and long - period part of R, that is, the part which

does not involve A or _', and the part which involves them only in

the slowly varying combination _ = A- A', respectively,

a' V2(1-cos_)
(16)

where X = i - cos _ 2V2 (I - COS _)

8_2(1- cos_) 4_/_(I-cos¢)3/2

+ g1($) (k2 + h 2) + g2(_) (kk' + hh') + g3(_) (hk' - kh') , (17)

(15)

= 7 > + ½cos _,
Where gl(_) 8_(1 - cos _)3/2 16_f2V1 - COS_

-.. .
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The Disturbing Function ,

7 +
ll

8_

and I o, cos Ig3(¢) " _)i12" 2 cos_ _in

(18)

_a

Terms of the third and higher degrees in -_T--, k, h, k' and h' have

been neglected.

The Relative Equilibrium Solutions

We suppose that the long period part of the problem has been sepa-

rated from the short period part by Von Zeipel's transformation or an

equivalent procedure, and proceed to solve the equations for the mean

and long period parts of the elements. :The transformations will add to

the disturbing function terms proportional to (m') 2 and higher powers

of m', but we will work now only to the first order in m'. The equa-

tions then take the form

d ( _ a) m.na2 Isin _ _2r _ 1

d"_ : _ ,.. _. " -_l co__)312+

+ 3 2 2"_i - cos¢)312 '

2m'na 2 _X + m'na ( BX 8 X)a' _S a -_ k-_-_+h-_--_

[_ 1 -2+2cos_= n - n' + m'n 2(1 cos ¢)

1

ia' i

(19)

(20)

•- 4.ei



The Relative Equilibrium Solutions ,

d_k m'na _ X

dt a ' ona[+I0 h "_T k sin 2 _I cos _)3/2

=- m'n_2hgl(¢) + h'g2(¢) + k'g3(¢) ]

- _ m'nk sin _ 2 - _I - cos _)3/2 '

(21)

and dh

dt

m'na _ X

a' _k

= m'n_2kgl(¢) + k'g2(_) -h'g3(_) }

- _ _ sin _ 2 - -)3/2 '

"2a; h sin _ 2 _(I - cos ¢)3/2 + _

(22)

The equation (19) shows that _ a is constant only if _ = _,

which is the collinear relative equilibrium configuration with P and
1

J on opposite side of S, or if _ a = 0 and 2 -

V_l -cos¢)312=

the latter requiring cos 4 = ½, that is, + = _ _/3. This is the

equiangular triangle configuration. Substituting in (20) shows that

is constant, since n = n', and, putting 4 = _ _/3 in (18), (21)

and (22) give

g

dk - m'n {27/8 h- 27/16 h' _ 27/16V7_'] (23)d-_ = .

and _-dt = m'n _27/8 k - 27/16 k' _+ 27/16_h'] • (24)

We can have k and h constant provided

h = 112 h' + -t/_-/2 k' = e' sin ( tO' + _/'/3) ,

and k = 112 k' "_ni/'3-/2 h' : e' cos (cO , + T/'/3) •

(25)

(26)
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The Relative Equilibrium Solutions ,

Thus e = e' and tO = uS ' + 7_/3, confirming that the orbit cf P is

congruent to that of J, but inclined to it at an angle 7_/3.

L ibrations About the Relative Equilibrium Positions

Put _ = 7_/3 + _ _o Then, to first order in m', _ _, and S a,

equations (19) and (20) lead to

d_dt(S a)= m'na'I9/2 _ _ +_ 3_/_2 (a_,a)} + 0 I(m,)21

and d_( $ _) = 3n ga + 0(re'n) ,dt 2a '

(27)

from which

d2 d

-- ( S _) _ 3_/2 m'n _ ( _ _) + 27/4 m'n 2 _ _ = 0(m_/2) (28)
dt 2

A trial solution _ + c/ exp (c_ t) leads to

2
c% 7 3_2 m'n _x + 27/4 m'n 2 = 0 ,

so that

+ O(m'n) . (29)
oQ=+ 2 n ie

Thus the second term in (28) is of order (m')312n2,! and so is of an

order to which this equation has not been completely derived. Thus

the expression (29) cannot be extended to higher powers in m' without

computing some of the neglected powers of m' in (27), which would re-

quire knowledge of terms of order (m') 2 in R.



Librations About the Relative Equilibrium Positions ,

To our accuracy, then, the solution for a and # is

6_ = A sin ( _ t + 6 ) (30)

_af = -_3m' A cos ( _t + 6 )

where A and 6 are disposable constants, and _ _-_' n. Now for
= 2

Jupiter, m' ffi1/1047, and hence _ ffi0.080e8 n. The orbital period of

Jupiter is 11o862 years, and so the period of the libration in a and ¢

ii °862
is _ = 147.8 years. The amplitudes of the oscillations in a _

and _a are in the ratio 1 : _-_-_, that is 1. 8.6 : l, and these

correspond approximately to oscillations in the transverse and radial

directions, so that this libration, when its amplitude A is small, is

approximately an ellipse, with its centre at the equiangular triangle

point, whose axes are in the ratio of 18"6 : l, the minor axis being

in the direction towards S.

For the eccentricity and apse, put

k = e' cos (tO, +

and h = e' sin (tO ' +

(31)

The equations (23) and (24) now give

d_, ( _ k) = - 27/8 m'n _ h,
dt

and d ( _ h) =
dt

27/8 m'n _ k.

(32)

The solution of these is

k = C cos ( 7t + _ )

_h = C sin ( Tt + _ )

(33)
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Swhere C and are disposable constants, and T= 27/8 m'n ffi (34)

0.003222 n, substituting the value for Jupiter. The period of this mo-

tion is 2 _-_/_ = 3682 years. Thus the eccentricity and apse longi-

tude are given by

and

e cos CO = e' cos ( bO' + 7_13) + c cos ( _t + _ )

e sin Ck_ = e' sin ( CO + 7T/3) + c sin ( T t + _ ) .

(35)

If C <e', cO librates about L_' _+ 7_/3, if C _ e', bO increases

monotonlally through all values.

The treatment of these librations in rotating rectangular coordinates

in the restricted problem does not exhibit this very long period oscil-

lation directly_ but shows a short period oscillation corresponding to

a small eccentricity, but with period differing from that of Jupiter

by an amount corresponding to the motion of the apse given by (35)

when e' = O.

The relative equilibrium posltions may be considered as a special

case of periodic solutions associated with a commensurability of period,

but differ from oth_ _uch cases in that there are here two independent

free librations about the solution, in place of only one, as in the

other cases, and a_o in that the mean orbital period in librating

solutions in the present case is always exactly equal to that of Jupi-

ter, while the libratlng and periodic solutions associated with other

commensurabilities in general have periods not exactly commensurable

with that of Jupiter, since the exact linear relation that exists in-

volves the apse motion as well as the meanmotions in longitude.
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LECTURE NOTES

MODELS OF GAS FLOWS WITH CHEMICAL AND RADIATIVE EFFECTS

F. K. Moore

I DIFFERENTIAL EQUATIONS AND BASIC MODELS

In the course of these lectures we will consider flows with chemical

activity and in which radiative effects are of significance, and in particular,

those dealing with problems pertaining to re-entry and propulsion. We will

I
I

I
I
I

I

I
I

I
I

I

be concerned mainly with chemical effects, and will not go into detail in con-

nection with electrical (ionization) effects.

Entry Phenomena

Briefly, the hypersonic entry of a vehicle into an atmosphere may be

described as follows: Initially, as the vehicle begins to penetrate the very

rarefied outer atmosphere, it is subjected to a bombardment by the gas par-

ticles in its path. In the region where the mean free path of the molecules

is very large compared with the dimensions of the body, the rebounding mo-

lecules do not interfere with other approaching molecules, and the vehicle

suffers only the retarding effect due to direct collisions with the particles in

its path. Further penetration into the denser regions of the atmosphere re-

suits in the establishment of a "Flow field", characterized by a mean free

path somewhat less than the characteristic dimension of the vehicle. Thus,

rebounding molecules encounter other molecules in the region surrounding

the vehicle, so that the particles in the path of the vehicle are, to some ex-

tent, warned of its approach. As still lower altitudes are reached, these

warning signals coalesce into a strong shock wave standing ahead of the

vehicle.

I 469

_J



Atmospheric entry, then, involves a progression from free molecular

flow to continuum flow. In the region of the shock, collisions promote exci-

tation of higher levels of internal energy of the molecules (vibration and

rotation) resulting in first, dissociation, and if the velocity is sufficiently

high, ionization of the gas. The flow field is shown schematically in Fig. 1.

\

Fig. 1

Such flow field,of highly excited air are studied to determine rates of

heat transfer at the surface of the vehicle. In their study, one must

consider the behavior of the "real 'wgas at elevated temperatures. Further-

more, the nature of the flow field governs the mechanics of the motion of

-2-
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the vehicle, the drag being of particular interest. One also finds that ioni-

zation of the flowfield affects communications with the vehicle. Thus, the

study of high-temperature gas is of great importance.

As the temperature of a gas is increased on passing through a shock,

compositional changes will take place. Considering air, we have the follow-

ing dissociation processes:

O ; ---. O r-O

Nz r +N

as well as those involving NO formation, ionization, and others. Fig. 2.

shows the concentrations of air versus temperature, at equilibrium. We

note from the figure that oxygen shows a marked increase in dissociation at

about 4000 ° K, whereas nitrogen does not dissociate appreciably until tem-

peratures in excess of 8000 ° K are reached. 8000 @ K corresponds to

velocities greater than those encountered in earth orbits, such high speeds

being characteristic of entry from a lunar trajectory.

O

I00

I000
.... ! i i

40oo gC.,oo ,a.OOO i _:)00

Fig. 2

-3-
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In atmospheric entry problems, radiant heat transfer may be important.

At orbital velocities, radiant heat transfer is relatively insignificant. How-

ever, at escape (capture) velocity typical of a lunar flight, radiation represents

a major portion of the heat transfer. The follow.ing relations indicate the

relative importance of convective and radiative transfer,

1
upon velocity: Let q be the heat load to the vehicle:

and We dependence

then

I
I

I
I

the vehicle velocity. The very strong dependence of radiative transfer on

velocityis tobe expected, because _rl:l_ _:T _ and T'_ _0o_'oThus, I

one finds that at 25, 000 ft/sec, qrad is approximately 10% of the heat load,

while at 35, 000 ft/sec, qrad is the dominant heat load factor. I

No ne q uilib r ium

The composition of the gas at any point in the flow field is, of course,

dependent upon the chemical kinetics of the gas. If the gas chemistry does

not have time to equilibrate, that is to say, if the composition is not the same

as the equilibrium composition for the local temperature, one has a non-

equilibrium flow. At very high speeds and very high altitudes, flows may

be dominated by nonequilibrium effects.

Of course, in a general sense, all flows are "nonequilibrium" situations.

I

I

I
In basic fluid dynamics, the Reynolds number

-4-
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is a governing parameter, where U_is a characteristic velocity, L is a

characteristic length, p is the density and f_4 the viscosity. Now, the

Reynolds number is in fact a comparison of relaxation time with the time of

passage of the flow. Consider the time required for a diffusive process to

occur, i.e., the relaxation time:

For very large distances, a very long relaxation time is required, similarly,

diffusive effects are slow for very small viscosity. Now, compare _relax.

with the time of passage of the flow over a body of characteristic dimension L:

The ratio of these two characteristic times is

__ (i)

This ratio is just the Reynolds number of the flow, and compares the time

for a mixing process to occur with the time of flow passage over the body.

Similar parameters appear in other flows, and by way of comparison,

we note that using the time of diffusion of a magnetic field yields

(z)

where Rrn is the so-called magnetic Reynolds number. The ratio of

chemical relaxation time to the time of passage yields the following:

-5-
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This may be of unit order in high-speed flows at high altitudes.

For ordinary, viscous hydrodynamic flows, Re _ 1, i.e., the dif-

fusive relaxation time is much greater than the time of passage. In this case

the flow may be said to be dynamically "frozen" - there is insufficient time

for the decay process to reach equilibrium. If the chemical parameter

_,o._,/_'t. >_ I , we may speak of chemical freezing. Now, if the ratio

_._O,./b_L_._(,_ one encounters serious difficulties in analysis, just as in

ordinary hydrodynamic flows one encounters analytical problems when the

Reynolds number is of order unity. On the other hand, if the ratio is much

less than one, (equilibrium flow) great simplifications result.

I

I
l

I
I

I
The study of chemically reacting flows is, as one would expect, con-

siderably more complicated than nonreacting flows. In the latter, one finds

similarities from dimensional analysis, and these can be used to great ad-

vantage. In chemical kinetics, however, such similarities do not generally

occur, and therefore one must attempt to solve particular problems and hope

to find simplifications which will render the analysis tractable. 2

Equations of Motion

From basic fluid dynamics we have:

continuity: _@ "4- _'(_ _ = O (3)

Since the gas consists of several constituents we require a continuity equa-

tion for the separate constituents:

I
I

I
I
I

I
I

I

where _ _ m- _- _v'17

and the other symbols are: I

-6-
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d,:

P
Wt.

_nt,

the mass fraction of the i'th constituent

the density

a production term to be discussed shortly

the gradient normal to the surface

the diffusion velocity of the i'th constituent

Eq. (4) states that the rate of increase of the particular species is equal to

the rate of production (by chemical reaction) of that species, minus the dif-

fusion of that species across some control surface. We note that:

_dc =/
/.

The bracketed quantity on the right hand side of Eq. (4) deserves attention.

____+_T_T

We can write:

The terms here are:

diffusion coefficient for inter-diffusion of constituents.

the "pressure diffusion", i.e., due to grad p. (In most

9_/_fu may be neglected here. )flowfields

thermal diffusion term - diffusion due to temperature

gradient only, and is usually neglected, since the coefficient

is small.

Thus, U_ is seen to depend largely upon the concentration gradient.

Equation of state: _ _ /0 I_ _-_L_'["

where _ is the universal gas constant.

Momentum equati on:

-7-
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Energy equation:

and we identify the following quantities:

I.,

where _L is specific internal enthalpy and _.f') is

the (potential) chemical energy of dissociation

is a heat source term, for example,

the viscous dissipation term

the heat conduction term

the diffusion of enthalpy

radiation heating

Lumped Constituents

A useful approximation, or gas model, frequently employed is that

of "lumped constituents". In effect, we normally use the lumped con-

stituents idea in aerodynamic problems, letting air take on an average

molecular weight, etc., neglecting interdiffusion of constituents as well

as chemical reaction. For low-temperature problems, it is not neces-

sary that the constituents be similar.

In cases where chemistry is involved, we can use the same ap-

proach to simplify the analysis. Briefly, for air, we have a mixture of

0 2 and N 2, and in dissociating flows we have, in addition, O and N.

Let us combine these four constituents, considering O and

gas which we denote by A, and 0 2 and N 2 as a diatomic gas,

A 2. We then have a two-constituent gas, and the i's of Eqs.

have the values 1, 2. Now, this "lumping" requires that the molecular weights

of the two gases be nearly the same, as well as that there is no net diffusion

- 8 -
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or reaction between gases lumped in the same group. That is, we assume

that the interdiffusion of O and N is small, and that the reactions between

O and N are negligible, and similarly for the '_A2" portion of the gas, It

is also necessary that the heats of dissociation be nearly the same for both

reacting pairs. Thus, we shall consider reactions of the form:

A --..

and the right hand side of Eq. (4) becomes:

I

I
I
i A2

Binary Mixture

We will now use the subscript 1 to denote A atoms, and 2 to denote

molecules. The equation for specific enthalpy may then be written5:

I

I
I

I

dis s ociation.

Tv is about

at room temperature.

where ._(_Cl is the specific heat at constant pressure of a monatomic gas
_L

7 _l_ is that ofa rotationally-excited diatomic gas, and the term (--___)_z2" _Z

accounts for energy of vibration, and finally, C I _1 (0) is the energy of

"_v is the characteristic temperature for vibration. Since

3000 ° K for air, the quantity _ k_Tv]r,-IJ _ 0 for air

Also, we note that

=_;/r_ I

-9-
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Li_hthill Ideal Dissociatin_ Gas

The foregoing gas model is not calorically perfect, for Eq. (8a) indi-

cates that the specific heat depends upon temperature. LighthiI15 observed

that the bracketed quantity above was very nearly constant for a large range

Tv/T_ = I. (midway between the
of temperature and he assumed that jv'/T"-I A.

extremes _ and I, thus rendering the model calorically perfect. This

is the first Lighthill gas approximation, and with it we have:

(8b)

which is the relationship for the enthalpy of an ideal, calorically perfect,

dissociating gas. A further approximation due to Lighthill is as follows:

Consider the equilibrium concentrations of the atoms and molecules, accord-

ing to the law of mass action,

where

(9)

is the atom concentration. From this equation it is seen that

at high altitudes, i.e., low densities, one could expect to find higher concen-

trations of atoms. The characteristic density is actually dependent upon

tempe rature :

For temperatures of interest, /¢_ exhibits a relative maximum, and is

fairly constant, and is therefore assumed constant, without introducing

serious error. In fact, we may add to Lighthill's argurnent,, : the observa-

tion that p._ reaches a maximum at precisely the temperature

7-= _,
e'r,/r -I

This is the temperature at which eq. (8b) is exact; i.e., the square bracket

-10-
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I

I

i

i

I
I

i
i

I

I
i

I

eL

of Eq. (8} for specific enthalpy is just equal to unity. Thus, Eqs. (8b) and (9)

are consistent descriptions of a dissociating gas which is just 50% excited

vibrationally.

The foregoing n_Lighthill model" is not particularly powerful analytically,

though T v is eliminated as a parameter. It does not result in any appreciable

simplification in machine calculations. The main value of the model has been

that it provides a standard dissociating gas in terms of which various compu-

tations and theories may be compared.

Dissoc iation Kinetic s

Consider the reaction

%
where M may be A 2 or A.

4+A÷M

M is the third party to the process and is

the particle which, in collision, shares the energy of either dissociation or

recombination. We can write

-- _ U-c -c)_ . ,,o_="..7 (,o)
-S

where W I is the production rate for atoms (zero for equilibrium), and T"

is a temperature dependence factor. This equation embodies the relation

O3 obtained from the massbetween _ and _ at equilibrium _VVI=

action law. The first square bracket accounts for the different third body

in the collision, i.e., whether M is A or A 2. The term _--_e"I'_/_inJ

the second bracket deals with the forward reaction (dissociation), while

the terrrl ('- _ C% deals with the reverse reaction (recombination). Sub-

stituting for _ from Eq. (9) renders the second square bracket zero,

which is the result desired for equilibrium. It is important to note that the

-ii -

. 479

-ll-



dissociation in Eq. (10) is second order in density,

term is third order in density.

In addition,

__- _35X fromexperimenP: 4
_.2,._ To'

while the recombination I

!
I

Freeman, in a paper emphasizing the Lighthill model, has, in effect,

taken the first square bracket to be equal to a constant. This simplification

of Eq. (10) is therefore often taken as one of the specifications of Lighthill's

ideal gas.

II SOUND WAVES

Perturbation Equations for Chemical Nonequilibrium

For sound waves (acoustics) with chemical relaxation and radiative

effects,

gases.

we first write the perturbation equations for a binary mixture of

The primed quantities denote the perturbations, e.g.,

)

The linearized equations are then:

I

I
!

I
Continuity: '_--_/ 4-p_ _ ".._/ "0p

Momentum :

Energy:

State : _ -- ¢I "r-/ I

I +Co Po

Pr oduc tion Equation:

po -c) e- _:c

-12- I
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From Eq. (9), ti-G)e_,-- _'_ - _-' we substitute in Eq.

for p/_
and obtain

p u- c _

which, after factoring, including _-¢e_,-C_ e-TD/'[']_

i tionality factor, and changing sign, gives

W) L C_ C"t

(lO)

in a propor-

(IZ)

All the quantities lumped into the proportionality factor are functions of

state. Now, if equilibrium prevails, C =C_ and we have k4/I- O If

C _C_, the expression indicates that the production rate will vary, to

cause the mixture to tend toward equilibrium. In this derivation we

i express_ the mass fraction as C -- C O +C # and assumed that C:,/ is

a small quantity. We also note that £'_ = C @ q- Ce/ , where C._ is the

I free-stream equilibrium concentration2to account for the dependence of (--_u_.

upon local temperature and density. From the proportionality, Eq. (12), we

can linearize the term,

c,

I
i to obtain (..oZ-C°<Ct-C/)andl_ca_ finally write

__ x,v, / _c _ ,% _c_I
Here all the proportionality terms are lumped into "_ , which is a

(13)

relaxation time.

We now generate a sound wave within the gas and examine its effects.

If C___/ were constant, one would simply solve Eq. (13) to find:

o -tl )

-13-
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This is a relaxation equation, where the concentration goes from an initial

/

to a final level following a simple exponential curve. However, since %

is a function of temperature and density, such a solution is rarely of value.

We now specify, as in ordinary acoustics, that the wave be curl-free,

so that:

v / _-

where + is the potential. The acoustic equation obtained from Eqs.

and (13) is now 6' 7, 11, lZ, 13, 14

(11)

The second bracket is the usual acoustic wave equation,

equilibrium sound speed (isentropic) given by:

with 6Q_ , the

(1% is the universal gas constant

divided by the molecular weight)
% =--

'_- is a reference relaxation time, and if _'* is large, we have frozen

flow, since the first bracket predominates. The first bracket is the
m

wherein the velocity of propagation is Q_c , the I

I

I
I

frozen wave operator,

frozen sound speed. % is found to be somewhat greater than _2and

one may think of the gas as being stiffer in the frozen flow case. If the re-

laxation time is short, i.e., _ small, we may neglect the first bracket,

and we have ordinary equilibrium flow, with acoustic propagation of small

disturbances at the speed (/_,

If _c is of the order of the period of the disturbance, the equation

can be solved exactly, but the solution is not particularly edifying. It is of

more interest to begin by considering a wave with a discontinuity, i.e., a

jump wave as produced by a piston. A ger_ral solution of the classical

wave equation is __-_(_:._), which includes the step function

I
I
I

-14-
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I

I
I

I
I

as in Fig. 3.

We represent the piston and wave motions on a t-x plot,

e t

- q=

Fig. 3

In the case of combined waves subject to Eq. (14), one expects a solution

closely related to that for the classical wave equation. Accordingly, we

i transform to coordinates _ and

, where

Thus,

I

and (15)

x
'_=- a;'e

is the distance measured from/%characteristic as yet undefined,

and
is the distance the piston has traveled. Eq. (14) becomes

• %. a+,_

where the subscripts denote partial differentiation.

_¢77>J=°
The highest order

(16)

derivatives must vanish

,:,'. _;. _,

-15-
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and we conclude that jump-waves must

must also combine to equal zero,

and hence we must have t_ -- _: ,

propagate at the frozen sound speed.

Now, the terms involving _

thus :

and because _ _'_Fr"_ I

Upon integrating once, along the wave front, we find I

where

is a rather small quantity. This equation shows that the jump amplitude

decreases with distance, (i.e., _ _- } andwehave a decay of amplitude I

of the wave head, as illustrated in Fig. 4: i

...........e'/_ -_--..........._---_......-_- I

......... '' ' ---"---'---- ...........ii.__ I ' ' ' _ ....... 4 II

-16 -
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I

i
I

/
/

/
" The Telegraph Equation

/
/

/'

/

/ Allowing _ to approach zero, and redefining the piston-travel
/

/

coordinate by 4 _=--_ , we get a new equation, after integrating Eq. (16)

i once with respect to _ "

!
for small _" .

= o (18)

i provides a model for the relaxing sound wave. Eq.

exactly:

This Eq. )18) is related to the telegraph equation, and

(18) can be solved

l °
where _ is a zero-order Bessel function of an imaginary argument,

and _(a_> is a source function for the piston motion. The nature of the

solution indicates how the frozen wave decays and changes to an ordinary

wave. The decay is due to energy absorption in dispersing the wave.

I
l
I

Thus, when chemical activity is present, and we have nonequilibrium

conditions, there results an interplay between the chemical kinetics and

the dynamic processes. This results in the dispersion of the wave. The

relaxation time plays a r_le somewhat analogous to that of viscosity.

-17-



Waves Affected by Heat Sources

Turning now to the acoustic problem involving heat sources which

might be thought of as due to radiative heat transfer, we write the equa-

tions of motion for one dimension:

Continuity

Momentum

Energy _/ =_ /(-/--/)

State _ = _--_] -e _---!
e_ We 7_

and we note that the right hand side of the energy equation is a heat source

ap _ _t_! _
,-i 7_x

f
no_-E + )._' - o

Po _

@/

(19)

term and plays somewhat the same rSle as does the chemical production

terminEqs. (111. Wealsohavo u'.-4,_ , e'---p4_,-
i_anipuIation of these equations yields

_o_4_ ___ ,_-1 _.'Cr')
where _t. is the ordinary isentropic sound speed.

Ols before.

(zo)

A second equation also

results, which is

where 0_-/_ " is the "isothermal 'T sound speed:

=ar , andthus <r"
The problem now is to combine Eqs. (20) and (gl).

then, in principle, T' may be eliminated between Eqs.

(2.,1)

For an isothermal wave,

u f'= _-'(r-"),
(ZO) and (el).

In order to illustrate the effects of radiative transfer, whereby the hot

region loses heat to the cold region, we will be more specific, and write

the simple proportionality

_'=- [F .-,

18 - 486
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Then, elimination of T' yields Eq. (14) again, except that _'_

by k ] Thus,

T

%t A_ _,
_1. is the wave operator, _ . _'_a'

is replaced

(22)

s and Twhe re the subscripts

being for the isentropic and the isothermal sound speeds respectively. If

is very large, we get the isentropic wave. If _ is very small we get

the isothermal wave. For cases where radiation is intense, the effect o£ the

radiative heat transfer will generally be to redistribute the energy and re-

duce temperature gradtents. We note at this point that _'L is only

slightly grealer than _/y since "_ is near unity, and one could also de-

rive a form og tk_ telegraph eq_t_n F_I. (18)) for this heat addition case.

R_e__]_a_ti0n tO ]KadiAtion Tranepor.t 8, 9

The foregoing assua_tption, that _}_T'/_,-- is not actually valid

for radiative transport, and we must examine more fully the transport of

energy by radiation to determine the proper general expression for _.

RAdiative energy emitted by an element of the hot gas may be absorbed

by another element, at some distance, or "penetration depth" from the

first. This distance is expressed as a reciprocal absorption coefficient,

,/_(# for a given frequency _), For a gas, I/_; could be as long as one

kilometer. If the gas is in a uniform state over distances much larger than

this, full "radiative equilibrium" prevails, and there is no heat flux, be-

cause the heat emitted and absorbed by each element is the same. However,

in problems of interest in hypersonic flows, one must consider the hot gases

at the nose to be confined to a small region, only centimeters thick. We

cannot therefore, assume full radiative equilibrium (see Fig. 5).

_'_ - 19-
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I

I
I

I
I

I
Fig. 5

In flow about such bodies, the path length of radiation is large compared to

a characteristic dimension for temperature change in the flow. It is

necessary then, to evaluate the integral,

is radiant energy absorbed, and Ex; is energy emitted, inwhere /_,2

the frequency range

"Radiative Transfer" by S.

viewed also by Lighthill 9,

Quasi-eq uilibrium Assumption

7,) "_ 9 +_. The theory to be outlined is in

Chandrasekhar (Dover Press) 8 , and is re-

Goulard 10, and Vincenti and Baldwin 11

In dealing with Eq. (23), it is commonly assumed that atoms and

molecules are in local thermal equilibrium, so that the gas element emits

as a black body. This requires that particle collisions be much more fre-

quent than photon emissions. Then, one may write

I
I
I

I

I
I
I

- ZO-

4 88



where _ is the black-body energy flux obtained from the statistical

_ I 0-3-_ c_being themechanics of a "photon gas", and _ _79 = _

Stefan-Boltzmann constant. Now, by the "quasi-equilibrium" assumption

the absorption coefficient Oi# is also taken to have its black-body value,

not only for emission, but for absorption as well:

i For full radiative equilibrium Z_ =- _?_)
,L

that the "spectral intensity _
)

I at some other temperature.

(23a)

but here we must imagine

, results from emission somewhere else

is the solid angle defining the direction

of the incoming radiation (see Fig. 6). I_d may be found from the

"equation of radiative transfer" (Chandrasekhar, page 9).

% (24)

which says that along its path, s, the intensity diminishes by absorption

<o(_ i-_) and is augmented by black-body emission <_(z_ _ , scattering

into or out of the beam being neglected.

I

I

I

Fig. 6
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Eq (24) may be solved for _-_,• subject to boundary conditions about

bounding surfaces, and the result, via Eq. (Z3a), may be used to evaluate

_ from E@. (23). In carrying out this process, a constant value of o_z)

is commonly assumed. This disregard of the frequency dependence of 0<

is called the "gray-gas" assum

Ref. II.)

The Rosseland Limit

We have mentioned that

_tion. (This has been recently described in

06 may be as large as 105 cm. A char-

acteristic length, say L, is likely to be much larger than this (radiative

equilibrium) only in astrophysical problems. If r/e4_ is small (but not

negligibly so) compared with L, then it may be regarded as a photon free

path length, and in this "Rosseland limit", radiative transfer depends upon

grad T, just as heat transfer by conduction does. In fact, Rosseland found,

The foregoing Rosseland formula cannot be used for shock layers because

[_ << _/(>_ , in general. However, the quasi-equilibrium assumption is
i

usually quite good. Ordinarily, there are, say, I0 I0 collisions per sec.

for particles, and CO(. is 3 x 1010/105 or only about 10 5 photon inter-

actions per second, and thus, the requirement is met. At very high altitude,

the collision frequency would be too low to maintain quasi-equilibrium, and

radiation transfer would be "collision limited".

Radiation pressure and the contribution of radiation to the internal

energy of the gas is usually neglected. The following example will serve

to indicate the magnitude of these effects and show why it is reasonable to

omit them• Consider the intensity of black-body radiation from a source

at 8000 ° K. The energy flux _--p., is given by

-22-
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± u'-"-[- '_ 5, _7 "ID -_" _S" 03 j'o_O.¢
E r< "- rr _ " _r . l "l O ,_ _"1 --

3, 14 ¢_'

i To find the corresponding specific density [2-D , i.e. ,

of radiation, we divide by the velocity of light, C,

EO 3 '10 I° r.._ "_

and the radiation pressure is

the internal energy

I

I

I

I

I

Thus, while the energy transfer by radiation is considerable, the internal

energy due to radiation, and radiation pressure, are both negligible when

compared to the enthalpy of the order of 10 8 erg/cm 3, and the static pres-

sure of the order of 10 5 dyne/cm 2, which are typical of hypersonic flows.

II, 12, 13
Application of Radiative Transfer Theory to Waves

The problem of the effect of thermal radiation on acoustic waves has

been investigated quite thoroughly in Refs. II and 13. In Ref. II, two

dimensionless parameters of the problem are discussed; i.e., the "Bueger

number",

NE_ " -== _(L

and the "Boltmmann Number".

o.-T 3

-23-
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and radiative transfer.

meaning :

Ngo ---_ _

Ngo _> 0

These tv_ parameters govern the combination of fluid convection

Physically, these parameters have the following

implies a completely cold gas (i.e. , "]--_ O)

implies a very hot gas

1

_u.--90(3 implies a completely opaque gas (--_-- small)

N _---_ O implies a completely transparent gas

These upper and lower limits of the two parameters lead to limiting cases

of sound wave propagation with radiative effects. If ____o_ (completely

cold gas) or N_--_ o, (completely transparent gas) the solution to the

problem is the classical isentropic acoustic wave, because no radiative

transfer takes place under these circumstances. If N_ -_'°O (completely

opaque gas), the classical isentropic wave is again the solution, because

in this case, although radiation may be intense, it is immediately reabsorbed

near its point of emission, and once again no net radiative transfer takes

place. If the gas is quite hot, and quite transparent, radiation tends to

smooth out temperature gradients, and an acoustic wave travels at the

isothermal sound speed rather than the isentropic sound speed. Thus waves

vary in their speeds of propagation, changing from the isentropic sound

at small _. to the isothermal sound speed inspeed a range near

I. 5 N_ = _. Also, within this range of "velocity dispersion" the

damping of the wave due to radiation reaches a maximum. For large

values of _'_ , the wave speed returns to the isentropic sound speed,

and there may appear another sharp local peak in the damping.

In the analysis of harmonic waves , it appears that in^the classical

acoustic wave traveling at either the isentropic or the isothermal sound

- 24-
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I
I

I
I

I
I
I

I
I
I
I

I
I

I
I

I
I

I
I

speed, there is a second, radiation induced,

no counterpart in classical acoustic theory.

this wave are strongly dependent upon b4B o

from infinite at _[_._ = 0, to zero at

The damping varies from zero at N_

fixed finite value of _ _ ,

I'_13o-7 _ to zero at _8o = 0,

very high value to a low value,

11
harmonic wave , which has

The speed and damping of

and _u. " Its speed varies

_-_C for all values of /N_.

= 0 to infinite at ]_._ .->_ o For a

the damping goes from a finite value at

at the same time the wave speed goes from a

then back again to a very high value. In

general, this second wave has greater damping and higher speed than the

classical wave, but at very high temperatures the damping may be compar-

able for both waves, and for a sufficiently opaque gas, the speeds may be

essentially the same.

15
Fig. 7

In some ways, study of the progress of a single jump wave

(rather than a harmonic wave) in a dispersive medium yields a plainer

picture of the trend of events. Fig. 7 sketches Baldwin's result 13 for

- 25 -
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the pressure of a jump wave produced by an impulsively-moved piston.

Close to the piston (location I), the wave is only slightly dispersed, and

_L << I , because the wave thickness (L) is small. Thermal

energy will, however, begin to leak across the wave front, as indicated

at location II, and a decay of the jump amplitude becomes evident. At

III, where L_ is no longer small, the front is very much flattened, and

the wave progresses at the isothermal sound speed. At IV, the profile

continues to spread out as we approach radiative equilibrium, but the wave

center now travels at the isentropic sound speed again, and we have _R_O_

in the limit as _'_--_ 0 o A complete discussion of the foregoing prob-

lem is given in Ref. 13.

Waves of Finite Strength

Behind a strong shock wave there is a large, sudden temperature

rise. The very hot gases behind the shock will radiate and tend to smooth

out the wave (See Fig. 8).

r_

/
/

T

/

I

/ "_"L--Te_ p '
/

,4---

_d

Fig. 8
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I

I
I

i

I

I
I

I
I

I
I
i

I
I
I
I

I

I
I

The temperature profile will tend to be that shown by the dotted line.

iation effects may then furnish the resistance, like that of viscosity,

sary for shock formation, but acting at longer range.

Clark_ 2 has investigated the effects of radiative transfer on such

waves of finite strength. This investigation was carried out under the

grey gas and quasi-equilibrium assumptions already mentioned. It is

found that waves can be maintained entirely by radiation. The situation is

quite analogous to heat addition in a constant area channel, wherein heat

added always tends to drive the flow toward sonic speed. In this case, as

in Ref. 6, both classical and radiation-induced waves are included, the

entire spectrum of both being considered to make up the shock.

large,

role.

may hope that some simplifying assumption will appear (similar to the

Telegraph Equation assumption) in order to make these problems more

tractable analytically.

It is important to realize that radiative effects in flows can be

especially for superorbital speeds, and may play an important

The analysis of these effects is very complicated, but possibly one

Rad-

neces -

III SHOCK WAVES

We now turn to the problem of blunt body flows with shock waves

and examine the effects of chemical nonequilibrium. We will also intro-

duce models for the analysis of such flows.

Description of Strong Shock

First, we will briefly review shock waves and the Rankine-Hugoniot

relations for very strong shocks. We distinguish between the two shock

configurations shown in Fig. 9(a) and (b). Fig. 9(a) shows a plane, freely

propagating shock, such as in a shock tube. Fig. 9(b) shows a bow shock

_. _ _: - 27 -
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about a blunt body traveling at hypersonic speed.

additional complications of the turning of the flow around the body,

causes the shock to curve, and the existence of a stagnation point.

shall deal with inviscid flows unless otherwise stated.

In this case one has the

which

We

(_ Pl_e Shock (b) _hock _+ BI_+ B_Jy

Fig. 9

We shall consider only the very strong shocks in which dissociative

and radiative effects are important.

Normal Shock Relations (plane, one-dimensional)

The differential equations (3), (6), and (7), neglecting transport

effects, are

Energy _ = _--_P-

Momentum

Continuity

(Z5)

-28-
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The integrated forms of these equations apply across shock waves (we do

not prove this, here). Now, from continuity _ _ 4- /O U- _ b( O

Combining this with the momentum equation, we find

L
,ntegrating, wefind H= + #_=_ -- _, + _ _,

1

where _ signifies evaluation far ahead, andAfar behind, the shock.

Now, in the free stream, _1 0o _-_- _ therefore, we may disregard

Similarly, _ _1 l is small compared to _t "

I Therefore, for very strong shocks we may write

t
which says that the enthalpy behind the shock is just the kinetic energy

I ahead of the shock.

Turning to pressure, we have _--P-'_c = -/3 _q

I tegrated since /0_ a const., to give _4_-_

(2.6)

which may be in-

Now, _m<</0 L_ (since

dynamic pressure, ) and _i

Thus :

is just twice the free stream

(2.7)

The pressure behind the strong shock comes from the conversion of es-

sentially all the free stream momentum into a force, through deceleration

of the flow.

We now assume an ideal gas for the purposes of an order-of-

/

magnitude analysis, and note that _/_ -- I-- _/_""

- 29 -



For the Temperature Ratio,
.- I u(_o2

T| .-v

Pressure ratio

5o 1-oo

/0_ [_ov "u 2-

P_

(Z8)

(Z9)

Density Ratio

and we note that

note that the density ratio is finite,

(30)

2"_'/('$-- t") is approximately 10. It is important to

while the pressure and temperature

ratios are unbounded, increasing as the square of the Mach number.

Now let '-. _-I_" 6., a small quantity, We now investigate the

order of magnitudes of changes in the variables behind the shock, since

we are interested in the concentration of atoms, rates of pressure change,

etc.

I
I
I

I

I
I
i

I

Also, since

Thus, if

Also,

/O_b{o_ -/91 /_, , wehave Ul/tXm ,_ _ , I

is small, pressure varies more slowly than density, i

SO

]+

0D/Qo_b(_) is of order 1 behind the shock and the derivative with

respect to the nondimensional distance x is of order _ . (Note

that x is a distance characteristic of the relaxation thickness of the

flow. ) We have then, the following order of magnitude relations behind

the shock :

. 30 _
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/.

These relations indicate that concentration and temperature "trade off"

behind the shock, since /0 C and T are the only quantities which vary

appreciably. Enthalpy is very nearly constant, and pressure varies only

slightly downstream of the shock.

We now examine the processes behind the shock, and inquire into

the behavior of the concentration of atoms. We assume T_ - 60, 000 ° K

for air. Now by Eq. (10) for steady flow of a Lighthill gas 20

- - -- - .... c._e- c ( Oa)

and we note that the square bracket goes to zero for equilibrium. This is

the "production law" for atoms. Now when the gas is subjected to a step

increase in temperature, by passing through a strong shock, the first

chemical process will be dissociation, resulting from two-body (binary)

collisions. Initially, recombination (a ternary process) will have little

or no effect; however, as time passes recombination must become in-

creasingly strong, and finally balance dissociation at equilibrium.

15, 21
Binary Scaling

For the present, we will confine our attention to that part of the

flow immediately behind the shock where we can neglect recombination.

//0 J_. neglecting the second term in brackets,Now, setting = _' J

and noting that _D oC: /9 _ )

then we may write that "_z/O_, I//_ • Because %_s_ = L/t_

31-
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This ratio is a parameter of the flow °

constitutes a similarity parameter for Eq.

occurs in a group and

rec ombination ne glec ted.

I
I
I

If we recall the simple case

and replace

If _ is constant, then _L becomes a scaling parameter for this

relaxing flow. The same holds true for the more complicated production

law given earlier, provided initial composition is fixed. We have what

amounts to a restricted Reynolds similarity. This is not surprising,

course, because viscosity is a binary effect.

of I

ICalculations for a Li_hthill Gas

Following Gibson 15, we consider the case where the pressure and

,-c a-%/T I
enthalpy are nearly constant. Now g4 _

o.

represents Eq. (10a) for steady flow and no recombination, and

-_°_c
7"=

_2

for a Lighthill gas. If H is constant (and it is, for all practical

T-T(d) > ,s,,_4

such that

s o that --- --

i

I

I
I

I

purposes, behind the shock)this means that

We now define a new variable %

32 ,_
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I Substituting into the rate equation,

_c _ _-(T) I-___Ace- T_/r

I ?k I+c
so that the right hand side is a function of _ only, and

In this situation, if we plot the concentration _ versus k

the universal curve drawn by Gibson 15' 21, as shown in Fig.

, we get

10

I

I

I
I

I
I

I :LI
Fig. I0

\

I
I

I

I

I

Thus, a binary scaling scheme is found for strong shock waves. Note

that the variable _ contains _ L as a parameter, and depends

additionally on U _ and :_(:/L•

Gibson 21 was able to show that even the departures from the

universal curve of Fig. I0 can be predicted when binary scaling is

not quite applicable. In the complete equation

-33 -
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The second term is replaced by

value of I(C_.) 3ustification of this step is described in Ref.

for cases of high equilibrium dissociation level.

Eq. (33a) is, then,

I -

_/][_ ( _ is the final equilibrium

ZI,

The solution of

This remarkable formula recalls the simple relaxation law pre-

(33b)

viously discussed, where _(¢J now plays the role of C , The

effects due to recombination are shown as dotted lines in Fig. 10, and

appear only as departures from the universal plot near the end of the

curve in question. Physically, we expect that the lower the density, the

higher will be the proportion of binary collisions, i.e., those promoting

dissociation. Recombination results from three body collisions, and is

3 and thus appears as a small effect near the endsproportional to /_ ,

of the curves. The scaling law renders the initial (dissociation) portion

of the curves similar, regardless of initial density (altitude). For the

scaling law to be useful, there are two required conditions:

1. Shock wave must be very strong.

Z. Altitude must be very high (i. e. , /_ small).
{

-34 -
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Sca.lin _ Limit

10

............ 4 t

I_-00o 25000 _ _

C!early,

important, an@ Fi_,

_,v__' the va!ue of

longer be neglected.

so the effect of

increases,

Fig. ] 1

as _ increases, _he recombination effects become more

Ii (from ZI) indicates qualitatively the limits of

beyond which the recombination term can no

The criterion chosen for Fig. II is that the re-

- 35 -
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is small (high

can be reached

when the speed is

combination rate is approximately 3/10 of the dissociation rate .

Referring to Eq. (33a), we see that when p

altitude) a larger value of _ , and hence _

before the second term is comparable to I. Also,

lowered, the density is not greatly affected, but _'_ is much less,

Z in Eq. (33a) holds down the value of that term as

and again a higher value of k is permitted.



real air

The set of reactions that have been studied are

I

Ca.lculations for Real Air I

The calculations just described for a Lighthill gas certainly em-

phasize the value of binary scaling for strong shock waves at low density. I

There have been many calculations of chemistry behind strong shocks in I

:eal air TM 17. These may be presented in terms of the scaling variable >(,.

rhe set of reactions that have been studied are I

o2 zo . . .
Dis soc latlve )

N+ O_ _ NO + 0 _ _ . . |
"" _, a, xcnange oz \ "34"

NO + N _ N 2 + O J "Shuffle" reactions \ ( ) I

N + O --_ NO+ + e- Ionization J

n general the "shuffle reactions" are predominantly to the right, which I

,romotes :he formation of oxygen atoms, and encourages the depletion I

pf N by recombination into N z or NO. In other words, the mechanism

or the re _mbination of nitrogen is more powerful than the recombina- I

ionmech Msm for oxygen. The shuffle reactions are binary in nature,

nd thus k ve particular importance at high altitude. I

Fig. 12 shows various concentrations plotted versus _ , as is I

on{_ i _.j., These are simply sketches, and details should be

ou_:ht , ,_-1 I

!/_ IO0/

0 lu _-o 3 o 4 o

In general the "shuffle reactions" are predominantly to the right, which

promotes the formation of oxygen atoms,

of

for the recombination of nitrogen is more powerful than the recombina-

tion mechanism for oxygen.

and thus have particular importance at high altitude.

done in Ref. I I.

sought in Ref. 21.

[o]

,o=
.3 l ,

10 9-0

Fig. 12_1
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.01

The sketches indicate that binary scaling works for real air about

as well as for the Lighthill gas.

I,O

,5

7" I _ I

X

I 'I I
/

ai
Fig. 13

Also illustrated in Fig. 13, is the phenomenon of overshoot of NO

and _- , typical of high-energy flows (here, the shock speed was

23, OOO fps).

The overshoot of electron concentration may be understood as a

consequence of the abnormally high translational temperature just be-

hind the shock. Since translation equilibrates first, the ideal-gas

temperature is reached - about Z5, 000 ° K for 23,000 fps. at 200,000 ft.

altitude. In about 5 mm behind the shock,

to take up its equilibrium share of energy,

tionai temperature has dropped to 8000-" K.

perature is at the higher level,

O dissociation manages

and, by then, the transla-

Of course, while the tern-

radiation and ionization are intense.
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Vibrational Coupling

Actually, the overall process of equilibration is strongly affected

by vibration. Fig. 14 sketches the sequence: First vibrational

T

oook

%o /

T_r_8oco' r-,

Fig. 14

excitation begins to rise (Rotation is nearly as fast as translation),

and dissociation follows. But, since dissociation occurs chiefly from

excited vibrational states, vibration and dissociation are kinetically

coupled 18. Also, when dissociation does occur, it depletes the higher

vibrational states 19 Thus, at high energy and low density, the kinetic

model for air must include vibration.

tional excitation is a binary process,

ations apply.

We note, however, that vibra-

and the previous scaling consider-

-38-
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IV BLUNT BODY FLOWS

We turn now to problems of the inviscid flow about blunt bodies mov-

ing at hypersonic velocity, and consider the effect of chemical reactions.

We shall be concerned with very strong shocks, as before, but now the

shock is curved about the body, as sketched in Fig. 15.

Fig. 15

The N e wtonian Approximation

The radius of curvature of the nose is denoted by L with O as

the center of curvature. The standoff distance of the shock is _ , and

I we introduce the independent variable _ to measure position. For

example, if we wish to investigate the streamline which passes through

A. B, we designate the _-_ _*_- of.......... _,,,s...... penetration of the shock by the angle

-39-
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and later position by _ . The free stream velocity is _ and at A its

component tangential to the body is _4_. With the assumption of a

strong shock wave, the order of magnitude of the shoc_kness may be

determined as follows: From Eq, (30), p//_oe "_ a/_ , and _ is rather

small. Now, consider a cylinder in the free stream (with axis parallel to

the free stream velocity), subtended by an angle _ . The mass flow

through a cross section of this cylinder is _.,

The tangential flow in the region between the shock and the body, at a

location _) is

These flows must be equal, and after cancellation, we have

L P

and the "shock layer" is quite thin compared with the body dimension.

This result leads to the "Newtonian" model for the analysis of blunt

body flows, wherein the colliding particles are assumed to give up their

normal component of momentum on impact with the body (or the shock,

which is the same thing, by assumption) and subsequently move tangent

to the surface. This is a particular kind of reflection, neither specular

nor diffuse.

For a plane, freely propagating shock, we found that the pressure

changes slowly behind the shock. With a body immersed in the flow,

however, the shock is curved and the pressure variations are large.

We have, by direct application of "Newtonian" theory, (_/(_w_C(._) _._L_@

andhence _-_(--__ _ ,_g where _" is the ratio of distance

" 4O

50g



measured along a streamline to the nose radius L. Previously, for a

plane shock, we had that pressure gradient was of order _ ( _" being

measured relative to a relaxation di stance.)

_._ I +_ \
have _-_ } ,x3

and, from the momentum equation,

the plane shock).

3&

Correspondingly, we now

for the plane shock),

_- (_"_ _ for

The Newtonian theory requires modification to account for centri-

fugal forces and effects of shock-layer thickness. Centrifugal force cor-

rections for a sphere 20 modify the result 0_ _ _-_ _ _ so that

0_= O (a sort of centrifugal separation)is predicted to occur at _ -- "r/'/_.

Bi,na r y Scaling

If we re-examine Eq. ( 33 ), we see that the crucial thing for binary

scaling is that H remain nearly constant. This is so for blunt body flows,

because 2f-I is small. The pressure is not constant, but its variation

can be absorbed in _ Thus, Gibson and Marrone 21 show that we can

carry over the binary scaling analysis to blunt-body cases,

by the same function of _ :

c .
where

being given

5 being measured along a streamline. O0 and LA. may be found from

Newtonian theory, and we observe the binary scaling rule that results:

.41 .
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Scalin_ Limits

From Eq.

the body, b_-->O and thus

to apply right there.

like B-A in Fig.

_. reaches some limiting value,

Fig. 16, which sketches information in Ref.

I

I

(34_, we see that as we approach the stagnation point of 1
"-'_, so we cannot expect binary scaling

On the other hand, as we travel along a streamline I

15, we know that (_ --_ G at 60 ° (for a sphere}, and thus

w_ich might be less than _rec _ 1

I

_.
!

!

' |

510
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m .....

I compares _x_w, and _k A_4_' under a number of conditions.

and altitude 200 kft, the limiting value of k along the streamline

I _0 = arcsin (I/5) just equals Q<'/%_4 ' the scaling limit for that altitude.

i Thus, for streamlines beginning farther from the axis, the universal

curve of Fig. I0 applies all the way to 60") while along streamlines closer

I to the axis the function C (%i.) will break away from the universal curve.

Of course, even right at the axis (00=0) , the actual departures

I from binary scaling occur near the surface, so one may speak of a te-

l combination thickness _A_._..
layer thickness, c ".,

I varies with /_ _. 21,

I

I

, I
I b,_.

For L = 30 cm

which is perhaps a small fraction of the shock-

or "stand-off distance" _ . Fig. 17 shows how _2_4/_

,0-_ to-J _1_.

Fig. 1721

- 43-
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It appears that recombination plays a negligible role at 200 kft, if L is

less than that for which _9_o[. ,_ I_)-S, Viscous effects at the nose should

be included. They scale completely with /$_o L , as indicated by the

boundary layer thickness _,_. on Fig. 17.
e

In summary, we can use binary scaling for the nose region, at

high altitude ( /0_ [ small) for flow suddenly heated by a strong {hypersonic)

bow shock 21, concluding that dimensionless variables depend on _O_e_l for

the same [_o and same initial composition. Under these conditions

nonequilibrium chemistry and ionization may be analyzed quite simply.

21
Example : Stand-off Distance

21

Fig. 18 shows Newtonian calculations of _/L showing the ex-

pected scaling for small values of /zoo= [_ , Also shown are two points

gotten from computed solutions with full air chemistry. Their agreement

.I

7_
L

_o-s io4 FooL

.5 L _.

I

I

I
I

I
I

I
I
I

I
I
I

i

I
i
l

I

I
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I

I

I

I

I

I

I

with the scaling rule, even for scales differing by I00, is an excellent

indication of general applicability of the binary model.

Exact Solutions for Blunt Bodies

The "exact" calculations just mentioned were done by a method

due to Lick 22, whereby a shock shape is assumed, and the full equations,

with chemistry are numerically integrated inward to "find the body".

17
Hall, Eschenroeder, and Marrono made calculations by this method,

using the 5 reactions cited previously. Here, we encounter a feature not

present in the plane shock problem: Now, as the flow proceeds, it cools,

and the recombination may quench before equilibrium is reached.

lol
A

5

S

Fig. 19 shows this effect

The "faster" streamline,

i7
for two streamlines, at _(_ = 23, 000 fps.

B, shows more freezing effect than A, as we

' 4.5
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would expect. The freezing of N is more pronounced because the exchange

reactions tend to deplete N, and keep O high. Thus reactions are binary,

and are the favored recombination reactions at low density.

The freezing effect just described is important to assess in

preparation for analyzing afterbody and wake flows.

V NONEQUILIBRIUM IN NOZZLE EXPANSIONS

We have, so far, briefly discussed chemical effects in high velocity,

blunt body flows, with particular reference to the nose region. We now

consider the flow over the remainder of the body, and examine the effects

of chemical activity upon this "downstream" portion of the flow field. Re-

ferring to Fig._(_, we consider a pair of stream surfaces extending down-

stream from the nose region. Following these streamlines, we find that

in the afterbody flow the gas undergoes an expansion, with cooling and

chemical recombination. We can think of this flow as being like the ex-

pansion of a very hot gas through a nozzle 23' 24 The nose region corres-

ponding to a reservoir of hot dissociated gas. We, then, learn much

about the flow over afterbodies by considering channel flows, as illus-

trated in Fig.2_ _. Of course, such channel flow studies are of interest

not only for hypersonic applications, but also for rocket nozzles and shock

tunnels.

-46 -
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Expansion and cooling experienced by the gas in passing through a

nozzle of course results in chemical recombination and reduction of the

high levels of other modes of excitation. Thus, processes occur which

are the reverse of those discussed previously for the nose region of the

blunt body.

Equation for Nozzle Flows with Nonequilibrium Chemistry

We write the equations for channel flow, neglecting transverse vel-

ocity components compared to the axial components. Then, measuring

down the channel, and assuming a single mode of dissociation, the equa-

tions reduce to

Continuity of Species ',

Continuity

Momentum ',

Energy °.

State ',

p_4 = co.s_-,

(35)

H + # _c_ =- c_.,.s+.

= (,, c3p l_-r-

We consider, as usual, that the enthalpy H consists of the internal

degrees of freedom plus the energy of dissociation. (We do not use the

Lighthill model at this point.) In the solution of these equations, the pro-

duction term is the major problem, since rates of production and recom-

bination are involved, in a complicated manner, in channel flows.

For the nonreacting nozzle flows, there is a critical mass flow de-

termined by the mass flow at the throat of the nozzle when M = I. Mass

flow at the throat is thus a parameter of the problem, with a (sound

speed at M = i) being known. With chemical activity, however, a* is

no longer known in advance, and the consequent lack of a definite mass-

-48 -
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I

flow parameter makes real numerical (machine) solutions for the problem,

via forward integration from equilibrium, very difficult. Another diffi-

culty concerns initial departures from equilibrium, where _'C/_ _
0

Computationally, one has something similar to an essential singularity;

thus, integration away from equilibrium tends to require very fine-grained

c a lc ulations.

Early work in the field of nonequilibrium channel flows was done by

23 24
Bray , and by Hall and Russo Hall and Russo used, first, a Taylor

series expansion of about I0 terms in I/_-- (A is area + throat area)

to carry the calculations to the throat. By iteration of these results, a

mass flow was established. Then, downstream of the throat, a modified

Runge-Kutta scheme was used.

A =1+_
Lz

where

follows,

For a hyperbolic channel shape,

L is a suitable length parameter, the results 24

for atom concentration versus area ratio

appear as

C

f

'ln_;n ;

4
24

Fig. 20

kl', ]

,_-'%
- 49 -
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If equilibrium is maintained throughout the flow, which implies a

recombination rate approaching infinity, we get the "equilibrium" curve

shown above. As a result of cooling and expansion, density decreases;

recall that

we

_ oc _c_)_-_/T _ _]-_- - c

Since density decreases, the rate of recombination decreases, therefore

there is a point where the process of recombination cannot keep up.

(That is, the three body collisions necessary for recombination become

too infrequent to maintain equilibrium.) The result is that freezing occurs,

rather suddenly, as shown in the upper branch of the curve in Fig. 20_,,

Concentration is constant downstream of the freezing point. Such freezing

of the flow is of great importance in two cases:

I. Propulsion systems.

In a rocket nozzle, the freezing results in the loss of

kinetic energy, because some of the energy is frozen

in the form of dissociation and vibration energy, and

is thus not available for propulsion.

2. Hypersonic wind tunnels.

In such test tunnels, we do not wish to have a dissociated

flow at the test section, therefore we must take care to

avoid too-early freezing.

In Fig. 21, a plot of temperature versus area ratio is shown for

infinite, finite, and zero rates of recombination.

- ,5o _ 51-:8
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1 z
To

I __ _:_

I o A

I

l

Fig. 21

From Fig. 21 we can see the effect of the recombination rate upon

the temperature of the flow. ( _'o is the reservoir temperature.) Com-

parison with Fig._0¢ shows how temperature and concentration "trade off".

I
A plot of pressure versus area ratio exhibits the following general

form:

1
I

I
i
I

1_

0 A

I

I 519



We note that the difference between infinite and zero rates is not as

great as for temperature. Thus, velocity is not coupled to concentration

as closely as is temperature. The foregoing figures are based ona tem-

perature of 6000 ° K and a pressure of I00 atmospheres in the reservoir.

The final frozen level of concentration is lower for longer channels

of the same shape, since the longer the channel, the greater the time during

which the recombination process can proceed. _lotting length versus

frozen concentration, we have a relationship as shown in Fig. 29

L
IO

l

Fig. 2 _9_I

Approximate Freezing Criteria

It is of interest to predict the occurrence of freezing in the

channel, but since channel flows are characterized by recombination

processes, there is no possibility of applying a binary scaling law.

The change of concentration along an equilibrium path is fixed by

the geometry of the channel. We must now inquire whether the recom-

bination rate will be sufficient to maintain equilibrium, and if not, where

52-
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along the channel freezing will occur. This problem has been studied by

24
Bray 25 and Hall and Russo Bray assumed that the rate for equili

brium flow is given in terms of channel geometry) etc. , so that _C/_c_."

is known. One then asks when this is greater than the recombination

rate:

I _
where /O_'T 7. is the recombination rate term.I

I
I

I
I
I
I
I

The left hand side

is an aerodynamic requirement, and we ask when it is greater than a

quantity proportional to /D_T-SC_ _'. Bray employed the equilibrium mass

action law for a Lighthill gas to eliminate the density, so that

c . e_ q--

Then Bray's freezing criterion is

Hall and Russo assumed that

_X r'

(36)

where r (a function) represents a reaction length or typical path

I

I

for relaxation increasing down the channel. Ceq, finite is the

(fictitious) Ceq for the temperature and density calculated on a finite-

rate basis. One may easily show that

(37)
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where the upper inequality holds for equilibrium flow, and the lower in-

equality holds for frozen flow. The freezing criterion is defined,

concentration arbitrarily, by the equal sign. Reference to Fig. 24 indi-

cates these three cases.

A

Fig. 24

At point A, (Fig. 24) where the curve splits into three possible paths, we

can predict DC/_Z;, The average rate during the abrupt freezing process

is Z (aC _ _n_. Also, since ,_;_z/'_e drops so quickly to zero, its

average value is __ C_. The freezing criterion is then

Machine calculations show the freezing process to be rather sudden,

and at point A the freezing line breaks sharply away from the infinite or

finite rate equilibrium lines.

- 54- 5Z_



Entropy and the Sudden-Freezing Model

The question of the entropy of the flow, while one of great interest,

is also one of considerable difficulty. Entropy is defined only for a state

which can be reached by an equilibrium process. For the early, equili-

brium flow the entropy is well defined, and the expansion is isentropic.

The change from equilibrium to frozen flow is one which is nonisentropic,

unless the freezing is mathematically sudden. However, completely frozen

flow is againisentropic, because chemistry no longer participates.

The formula for entropy of a gas

2E

in equilibrium is

Using Lighthill's gas and the state equation,

I This form, as it stands, cannot be integrated to give a variable of state,

except for frozen concentration, that is, for c constant. Then,

For equilibrium, we have another relation,

"T']

(38)

(38a}

(39)

I by which one of the original three variables may be eliminated. Thus,

| _- ,---z

applies for equilibrium.

Seq. goes over to Sfr"

The constant in Eq. (39) may be chosen so that

continuously at a sudden freezing point.
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The Mollier Diagram

Bray n0ted 25 that his freezing criterion, (Eq.

tion between C or T, which, substituted into Eq.

state in terms of S only:

36) gives another rela-

(40), gives the freezing

Thus,

in Fig.

25
one may construct a Mollier-type diagram , as shown schematically

25.

H

5e, 5

Fig. 25

According to this diagram, if we start a flow from a point of known

enthalpy, Af the process proceeds along the vertical isentrope through the

"freezing line". Actually, of course there may be a narrow freezing zone

rather thana freezing line. In any case, this kind of diagram represents

a very useful condensation of results, when freezing is sudden.

56-
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An approach to the problem of more gradual freezing has been made by

Z6
considering two subsystems which flow out of equilibrium with each other.

Then one can define entropy for these subsystems, each of which is inter_

nally, in equilibrium. However, this is a dubious approach.

Calculations for Real .Air

More complete machine calculations have been made 34, including the

five reactions (Eq. (34)) important at high temperature. .As usual, the

exchange or shuffle reactions favor recombinatic:_ of N. Results of cal-

culations for the concentrations of the various species are shown in Fig. 2634 .

I0°

_, _,"t_ _t__

Io

\

34
Fig. 26

An important feature of such a flow is that the recombination of nitrogen

is vigorous, via the NO reactions, and O concentration, as a result,

stays high, freezing almost immediately.
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We must now attempt to apply these results to flows about bodies.

d

I
-'--- I

5

Stream Tube Applications

Fig. 27

Referring to Fig.._0_ we return to the idea that the flow through a

stream tube about the body is essentially described by a nozzle flow model

such as we have just been discussing. The region of hot dissociated gss

near the stagnation point serves as a high pressure, high energy reservoir.

In general, the nozzle flow analysis cannot be applied without some resero

vations, due to the transverse gradients existing in the flow fleld, if_,

however, we know the nature of the flow (i.e., the streamlines) we can

apply the nozzle flow analysis, with the most serious error being due to

the pressure mismatch at the boundaries between stream tubes. Recall-

ing Fig. Z2, we note that the pressure is not seriously affected by the

chemistry, however, and we can accept the nozzle flow analys-s as a
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reasonable approximation. A large uncertainty exists in connection with

conditions at the nose of the body, however; in general, we cannot be sure

that we have an equilibriu_r_ reservoir.

To illustrate the uncertainties involved we compare the sketches,

Figs. 27 and 28.

G

$

Fig. 28

In both, we plot concentration against distance along the body. In Fig. 27

dissociation rate is rapid, and equilibrium is reached before cooling

begins. Freezing then occurs downstream. In Fig. _ we note the

-59 -



that chemical activity and radiative transfer result in phenomena not un-

like viscous effects,

shocks. The time lags encountered in chemical kinetics relate to the time

lags in viscous effects.

Equations of a Binary Mixture

We shall consider a multicomponent high temperature gas (in

particular,

hand side of the conservation equations of Part I,

!

possibility that the concentration in the nose cap region fails to reach I

equilibrium. Clearly, the dynamics of subsequent freezing will be differ- j

ent than in the case of the equilibrium reservoir. I

I

VI TRANSPORT PROPERTIES I

The final topic of this series will deal with the effects of viscosity I

on nonequilibrium flows. We first consider transport properties, and I

in Part VII will deal with viscous flows. We will attempt to find flow models

!for nonequilibrium flows including viscous terms. We have already noted

• radiative transfer result in phenomena not un- I
i.e., damping and dispersion in acoustic waves and

acourtered in chemical kinetics relate to the time I

_ture I

• multicomponent high temperature gas (in I

air). The transport quantities appear as terms on the right-

t _on .quations of Pa_'t I, and now these are re- I

written as

We indicate the physical meaning of these terms:
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a

is a concentration gradient effect;

is the viscous shear stress term;

consists of a term to account for enthalpy increase due to dissipation,

heat conduction term, and a term to account for diffusion of enthalpy.

a

Enthalpy flux arises from the unequal transport of atoms and mole-

If more atoms than molecules are transported across a surface,

since the atoms carry the dissociation energy, _(0)
) there is a net

cules.

then,

flux of enthalpy across the surface. Thus the final term consists of the

_k__._C , and _(o_ is the property trans-diffusion velocity quantity, p a_

ported. We assume that ,_o) is much greater than the internal energy of

molecules, i.e., H_, <_" C'_(°?

From the Eqs. (42) we see that we must specify three mixing par-

ameters, _, _, and _, We now define two important dimensionless

parameters :

Prandtl number :

-
X (43)

which compares viscous effects to heat transfer effects; and

Lewis number

_ P-_" (44)

which compares diffusion effects to heat conduction. The Prandtl number

and Lewis number are both of unit order, and Pr _3/4. Lewis number

is frequentlyapproximated by unity; however; this may not be very

accurate, since Lewis number depends upon temperature approximately

as shown in Fig. 29.



I

Fig. 29

Using the nondimensional parameters, we note that

-- _Vt

%r : H--
we assume _-- 127 , the last term on the right hand side vanishes,

and the energy equation is much simplified, since the heat flux and energy

equation do not explicitly involve chemistry. We assume, then that dif-

fusion and viscosity effects are so related that [._ = I.

We note at this point that gas viscosity increases with an increase in

temperature, as opposed to the decrease in viscosity with temperature in

liquids. One may explain this behavior by considering the interpenetra-

tion of particles, which is greater for more energetic (higher temperature)

gas particles. Thus a hot, or rarefied gas has a high viscosity. In disso-

ciating flows, one finds that atoms have a greater penetrating depth than

molecules, and therefore the dissociated gas is more viscous than un-

dissociated gas. This is shown qualitatively in Fig. 30.
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Fig. 30 I_

product/_/_ , and

tion) than is /44, .

quite well for the dependence of

The collisional models used to calculate the viscosity of multi-

component, high-temperature gases are various; the matter is reviewed

in Ref. 37.. Actually, it is usually more important to have the right model

for high-temperature molecular collisions than it is to account for the

38
presence of atoms . For flow problems, viscosity enters through the

/O is a stronger function of c (through the state equa-

In any case, a simple perturbation formula 38 accounts

/_t on c:

An important question at this point is: Where do we measure vis-

cosity in flows with large temperature variations? We wish to use a

constant value for viscosity (or, rather density times viscosity), but

what value is most representative? In general, the answer is to evaluate

('£ ,..
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viscosity in the hottest part of the flow. This is because the hottest part

is also (usually) the region of lowest density, and hence forms a very thick

layer compared with cooler parts. Properties of the thick layer dominate

transport, and the viscosity of this layer rather well represents the ef-

fective viscosity of the whole flow.

Surface Catalysis

Consider a semi-infinite region bounded by a solid surface, and

denote the surface conditions by the subscript zero, If an atom strikes

and adheres to the surface, a second atom may strike it and recombine,

I

I
I

I
I

I
the two then leaving the surface as a molecule. In such a recombination,

a three body collision is not required, since the wall acts as the third

body. The recombination is essentially a one body process. A wall may,

then, act as a catalyst for recombination, and surface catalysis is of

great importance in nonequilibrium flows. We can write a surface

I
I

I
catalysis rate equation as follows:

(46)

Where the left hand side is the rate of arrival of atoms at the surface,

by diffusion, F is the catalytic efficiency of the surface, the radical

is a molecular velocity term, and the last bracket is the departure

from equilibrium concentration at the surface. The rate of arrival is

then seen to depend upon the degree of nonequilibrium at the surface.

Ifc-c... r

I

I

I

there is no net arrival of atoms, i.e., _/_2 ---- O- The I

I
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quantity _" is usually not well known since the physical chemistry

of catalytic reactions is not fully understood.

VII VISCOUS FLOWS

We have seen how chemical relaxation leads to the dispersion of

waves, and other effects analogous to those due to viscosity. Often,

relaxation and viscous processes must be considered together.

Couette Flow

Among problems of viscous, heating conducting flows with disso-

ciation, the case of Couette flow is the simplest. Consider two infinite

parallel plates, separated by a distance _ , the lower plate being

fixed and the upper plate moving at some velocity L2.$ (which might

be very high). In such a flow the shear force is constant, and the velocity

and temperature profiles might be sketched in Fig. 31. Many flows of

interest can be represented, at least qualitatively, by suitably defined

- 65 533



Couette flow situations. A variation of this problem is to hold both plates

fixed and then impose a temperature difference between the plates,

I
// // u_ / _ / )/

• JJ

Fig. 31

The differential equations are: I

Momentum: .M_ _-_ = const. (47a)

Energy: _ _r. pC _ + .. __, (47b)

Boundary conditions would specify velocity and temperature at the two I
am

surfaces as well as the catalytic condition

at the wall.

Now, one can eliminate

35
tegrate the resulting equation

between Eqs. (47a) and (47b) and in-

Thus, if [_ -_ I and both walls are

cold (Fig. 3 1),

H

Hw

one gets

- 66-
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Maximum enthalpy occurs when the above bracket

= 1/z.
Us

and if

Then,

(v,,) - I, P____.MZ

_H'---H_.__ 3 0

is 1/4, i.e., at

(48b)

i That is, the enthalpy at the center line is 30 times that at the plates. The

foregoing indicates the large amount of heat which is introduced by viscous

i dissipation, most of which is absorbed in dissociation.

Consider now that the plates are both stationary, so that there is no

I dissipation. However, the upper one is at a very high temperature (See

i Fig. 3_. Eqs. (47) give relatively simple solutions for this problem,
which is quite a good model for the conditions found at the stagnation

region in hypersonic flow.I
I
I

I J

////

/f-/_f/ /,/"

............/'r_['_ooo°K
..........._ _-_.?_

"r'w= 5oo°_ " /t x

I
I

I
I

Fig. 32a

/_4 = const., and for the equilibrium case we mayNow, for 1,

express a measure of heat transfer as (_ _ ._:_ (this unit will remain

an undefined "Nusselt number", serving only as a comparison for var-

ious cases of heat conduction). From Fig= 32a.. w_ nnfp fh_f fh_ t_m_.
................ • ...................... l-_-

ature gradient is smallest between the plates because a greater
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proportion of the heat flux is due to diffusion of atoms in that region, while

at the extreme surface temperatures heat is transferred chiefly by

c onduc tion.

Let us now examine the "frozen" case, where in this context, frozen

means that the atom concentration is not changed by chemical reaction.

That is, _/_'0, and for this frozen case,_/_--_ = const. This relation re-

quires that the flux of atoms be constant at every layer. We consider

that equilibrium exists at the upper plate, but not necessarily at the lower

plate.

f//

/// / f / / f/

Fig. 32b

Any of the straight lines in the above Fig. 32b satisfy the condition

_ = const. (Assume[_z/_ =const., for convenience.) Suppose the

lower surface is cold, so that _r_ --0_ then if the wall is completely

_C
noncatalytic, i.e., F--- C) , then_-% must vanish, according to Eq. (46).

If, on the other hand, the wall is fully catalytic, i.e., F --_ _ , then

C-_ _0 for finite In the frozen, noncatalytic case, the heat
r

68_
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i

I

I
I

I
t

I

transfer (purely by conduction) is expected to be small, and using the unit

introduced earlier, we find (_ _ ._. However, if the chemistry is

frozen and the wall fully catalytic, there is a chemical reaction at the sur-

face, that is, the energy of dissociation is deposited at the surface upon

recombination, but there is no chemical activity in the gas. In this case,

heat transfer is high and we get roughly (_ _ 0.60. Thus, a fully cata-

lytic wall will experience,xthe same heat transfer whether or not there is

gas-phase chemistry.

This kind of simple "Couette" calculation provides a sort of quali-

tative model 28 for the more complete calculations of the hypersonic stag-

31
nation-point flow .

Couette Flow with Radiation

He re,

ra dia tion:

Pr

we consider that layers of the gas may exchange heat by

?-

Such a problem has been studied by Goulard and Goulard 29 for Couette

flow, with a very large temperature difference between the two plates.

The gas is assumed to be quite transparent, <B<'_- so that we do not

" I!have radiative equilibrium. However, we assume "quasi-equilibmum

and also assume a "gray gas". In this case the result from reference 29

is:

where _" u 9<. _ and _ = c.T4 ; that is B is B;_# integrated

over all M . The terms have the following meaning: _H/_ repre-
v

sents heat conduction downward {Fig. 33) from any point toward the low

%
temperature wall. The term i_ _(_O_J represents downward
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radiative transfer of heat for layers above _" , and the last term is upward

radiation for the layers below '_. The net effect of radiative transfer is

a smoothing out of the temperature profile. Temperature profiles and energy

flux are shown in Fig. 33.

T
9_

,I

/ " ' " _ * " " .._ . ._r_.__

w

/ ," ,,./ / ._OeK / I _ooooK.

Fig. 33

The presence of radiation revises the balance of heat flux. if the overall

heat flux level is, say, a value of 3 watts/cmg/sec., then at the upper

plate, analysis 29 shows that 5 w/cmZ/sec, are due to downward convec-

tion, diminished by 2 w/cm2/sec, d_e to upward radiation. At y = 1/Z

there is a heat flux of 3 w/cm2/sec, downward due to convection and the

upward radiation contribution tend to cancel. At the lower wall, there is

then only 1 w/cmZ/sec, downward due to convection and 2w/cmZ/sec.

36
downward due to radiation. Chung has analyzed Couette flow with ioni-

zation, including effects of the plasma sheath.

Viscous Waves

A somewhat different kind of problem which provides a "model" for

boundary layer flow is that of a single plate in a semi-infinite expanse of

gas, the plate being suddenly moved or heated 30. Here, we consider an

I

70 _
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I

I

i

I

I

I

I
I

I

I

I

I
i

I

I

I

I

unsteady problem in independent variables _ and I to correspond to

a two-dimensional steady problem. Since the plane surface is doubly in-

finite, all _D/_ --O , and the problem is linear: We may put all

_I_ _-_I_.

If a step change of temperature or velocity occurs at the plate, a

viscous, dissipative, conductive, or diffusive wave spreads into the gas

above. In the absence of chemistry, the heat flux to the plate goes inversely

with the wave thickness: (_ _" I/_-o Thus, we will speak of heat transfer

in terms of a Nusselt number q _f_ which would ordinarily be constant.

First suppose temperature of the plate drops slightly, the gas above

being dissociated. At first, there hasn't been time enough for any change in

c (whatever the value of F ) and the N_t is small, compared with the

value later on, when c also falls and the chemical energy is given up to

the surface, or near the surface in the gas. Ultimately, equilibrium must

be achieved, for any F , though the value of r affects the speed of

equilibration.

1

0 r_/_

3o
Fig. 34
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Fig. 34 shows how _ is affected by catalycity, as well as by

which compares change in temperature with change in (equilibrium) concen-

tration

at constant pressure. _ can be quite small for air_ in effect, because

_(0) is large. Especially at low density is this true. The mathematical

assumption of small _ greatly simplifies the analysis of this problem 30,

providing a model which might usefully be extended to other problems.

Fig. 34 is remarkably clos_ qualitatively, to the more exact results

31
for stagnation-point flow due to Fay and Riddell , and thus, this "Rayleigh

Problem" provides a useful model for certain hypersonic boundary layers.

Such a model for the flat plate boundary layer is provided by assuming that

the plate temperature is low, but it is suddenly moved at high speed. Con-

sequent dissipation produces heat flux. In this case, the early and late

situations are the same -- no chemistry. At intermediate times, however,

atoms are produced in the gas, but may not have had time to recombine at

the surface. Thus, at the surface, one has the concentration-history shown

in Fig. 35. A corresponding dip in an otherwise constant

expected at these intermediate times. Here again, small

the analysis.

may be

simplifies
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Fig. 35

I

I

The Leadin_ Edge Problem

The corresponding problem of the hypersonic boundary layer with

chemistry at the leading edge of a flat plate ham been studied by Rae 33.

I
i

I

In this case, one is concerned only with dissociation, since recombination

is of no consequence in the region near the leading edge, i.e., _ << _4_..

As a result, binary scaling is applicable. Rae finds that the temperature

exhibits a sharp maximum within the boundary layer, owing to the effect

of dissipation. He was able to achieve a simple solution by an approxi-

I mation of a thin reaction zone at this maximum temperature layer, on

either side of which concentration was assumed to change only by diffusion.

The Stagnation Point

I

I

As we have mentioned; the stagnation point is the only case for which

the nonlinear viscous flow with nonequilibrium chemistry has been solved.

in effect, one finds the leading term of a Taylor series in distance away

from the stagnation point. The heat transfer results 31 are illustrated

I

I
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I

quite well by Fig. 34, except that, instead of real time _ , one uses the I

characteristic time ,, L/_ in forming the abscissa. Thus, a small nose
radius would favor frozen heat blockage", for a noncatalytic surface, for I

example.

Stagnation Point Heat Transfer at Altitude I

Chung 3Z has analyzed this problem, For stagnation flow_ as altitude I

increases; _ increases, and this has the same effect as a decrease in L.

Thus the flow tends to freeze, even though the boundary layer thickens. At I

high altitudes, the shock layer, _ is nearly all viscous (refer to Fig. 17);

that is, the boundary layer thickness approaches _ . The heat transfer I

calculated by Chung varies with altitude as shown in Fig. for a I
rate 36,

noncatalytic wall.

I

I

I

I
l
I

_2
Fig. 36

I

I
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In regionA, heat transfer decreases with increasing altitude due to

slow recombination in the frozen boundary layer, The energy is essentially

trapped in the form of dissociation energy, and the boundary layer, being

almost completely frozen, has reduced heat transfer to the wall. However,

as altitude increases still further, the degree of dissociation behind the

shock decreases, and less and less energy is taken up in dissociation. Thus,

at about 2!0 kilo feet these two effects are nearly equal and heat transfer

reaches a minimum. Further increase in altitude, i.e., region B on

Fig. 37, results in failure to reach dissociation equilibrium behind the

shock, and finally, at about 300 kilo feet, there is little or no energy going

into dissociation at all. Here we approach the condition of an ideal gas,

with no chemistry involved in the heat transfer process.

s ociating gas,

follows :

1.

REVIEW OF MODELS DISCUSSED

In these notes, a wide variety of assumptions and physical and mathe-

maticai models, useful in the analysis of hypersonic flows of a real dis-

are discussed. In conclusion, these may be listed as

,

.

Lumped constituents (p. _ ): grouping together of nonreacting

constituents.

Lighthill Ideal Gas (p. I0): vibration 50% excited and

a constant; useful as a standard real gas.

Nearly-Equal Speeds of Sound : small dispersion of sound

waves in either chemical (p. _ _) or radiative (/9) cases. Leads to

Telegraph Equation.

_75_
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4. Quasi-Equilibrium Radiation (p. 20): even if quite transparent,

absorptivity and emissivity at black-body values.

5. Gray Gas (p.Z_-): Emissivity independent of wave length.

6. Constant pressure, enthalpy behind normal shock (P.S!):

For very strong plane shock, and _ nearly 1.

7. Newtonian Flow (p. 39): Enthalpy and velocity nearly constant,

for strong (curved) shocks and _ nearly 1.

8. Binary Scaling (p. _ I,): when low-density flow is initially under-

dissociated.

9. Coupling of Vibration and Dissociation (p. 3_): behind very strong

shocks.

10. Sudden Freezing (p.50): during expansion of initially fully-

dissociated gas.

ll. Constant "Entropy" (p.55): for channel flows with sudden freezing --

Moliere diagram.

12. Channel Flow in Stream Tubes (p.58): for analysis of nonequili-

brium afterbody flows.

13. Viscosity Evaluated in Hottest Part of Flow (p. _5): generally

a good rule. Viscosity weakly dependent on e .

14. Constant Pr, bee , _/_ (p. 4! : &3 ); Usually done but not

fully justified.

15. _ C<_ Z_ H (p. 62_): Ideal gas result applies to this extent,

if [.z = i.

16. Couette Flow (p. 4J): a model for hypersonic boundary layers.

17. Viscous Waves (Rayleigh Flow) (p. 76): a model for hypersonic

boundary layers, especially stagnation point flow.

- 76-
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18, Thin Reaction Layer (p.7_ ): for leading-edge problem.

19. Equilibrium Change of Internal Energy Much Smaller Than

Chemical (p.72_): Small _ _ Simplifies Rayleigh problem.
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THE STABILITY BEHAVIOR

OF THE SOLUTIONS OF HAMILTONIAN SYSTEMS

by J Moser

New York University

New York City

These notes were written up by Dr_ Deutsch after the meeting° For a
careful revision and editing I am grateful to Dro Fred Gustavson who
also supplied valuable remarks. I also wish to thank O_ Benediktsson
for his help in Section V:
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Sisbility Behavior

I. Introduction.

a. The study of conservative systems hgs a long history, its aim being

mainly the description ofplanetary orbits° In fact, for a long time this subject

was one of the primary fieldsfor applications of the calculus and to a tremendous

extent stimulated the development of analysis Following the work of

Poincar_ and Birkhoff the subject of conservative systems reached an apparent

climax which seemed to have brought the development to a stop° Many of the

important questions were solved or were shown to be absurd or inappropriate

questions, As an illustrationof the latterpoinL recall that for many years

mathematicians sought explicitsolutions of the equations of motion; first by

explicitformulae; then by quadratures, which means that the solution is repre-

sented in the form of explicit integrals When itwas recognized that this ques-

tion is closely related to the construction of integrals, one then tried to establish

integrals of the motion -- say for the three body problem° It soon became

suspected that there may not exist any integrals for the three body motion other

than the known energy and momentum integrals,, Bruns, by means of a very

ingenious argument, showed the nonexistence of algebraic integrals for the planar

3 - body problem, except those which are algebraic functions of the known ones°

Later_ Poincar_ presented an argument which showed that in general a Hamilton

system need not have more integrals than the Hamiltonian and functions of it,,

Even though his argument has been criticized as being incomplete_ it does clearly

contain the germ of the proof° Further details on this subject are discussed later°

Thus questions related to the search for integrals of the system and the

solution by quadratures seemed to have ended with Bruns and Poincar6o This is

both a true and a false description of current work° To show that the quest has

not really ended, we have to ask what is the principal aim in the study of conserva-

tive systems,, First of all,, it is the description of the solution for long time

intervals,_ The differential equation relates the function and its derivative at a

point One should deduce from this knowledge the behavior of the solutions for

long times_ For example, can one exhibit solutions of the 3 - body problem which

never lead to collisions? The question of collisions is intimately related to the

stabilityproblem in the 3 - body problem_ The stabilityproblem has also been at

the root of the attempts to discover explicitsolutions, since these solutions can be
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Stability Behavior

for M1 times
described^° In generals the task of describing the behavior of all solutions of a

conser_rative system for all time is a very difficult one because the motion can be

ergodic and_ therefore_ would be much too complicated for an analytical descrip-

tion,

I shall not attempt to give a historical background of the related developments

in celestial mechanics° For this purpose, I refer to the very interesting paper of

Hagihari *o Hagihari also discusses the point that the problem of describing the

motion for all time is an outstanding open problem°

Recently the theory of Hamiltonian systems has received a strong impetus

from the investigation of artificial satellite orbits, but an even stronger impetus

from the study of charged particles in a magnetic field, e, g, in accelerators,

where the particles go around more than 300,000 times in s vacuum chamber and

have to be retained in a remarkably narrow chamber by appropriate magnetic

fields, These time intervals are relatively much longer than those that one is

accustomed to dealing with in astronomy, where one revolution has to be taken as

a year for the earth, or a month for the moon, The motion in particle acceler-

ators thus poses the challenging problem of developing a theory for predicting

the orbits for such long time intervals.,

For the description of satellite orbits the main questions are those of

numerical methods; however_ the nature of the orbits is still of interest,

h Within the last ten years:, this outstanding old problem has received an

immense advance° At the International Congress in Amsterdam ,( 1954 )_ A, No

Kolmogorov announced an outstanding result concerning the existence

of almost periodic solutions of Hamiltonian systems_ The statement of Kolmo-

gorov_s results, its application to celestial mechanics and an indication of its proof

will be the topics discussed in these lectures,,

Since the announcement of Kolmogorov, one of his students, V_ Arnold, has

worked on the ideas presented by Kolmogoroy and has applied these concepts to the

n- body problem, Arnold discussed some of his results at the last International

Congress ,_!1962_ He also presented the details for some theorems related to

liagmart, Notes of the Summer Institute in Dynamical Astronomy, Yale
University ( July 1960)
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Stability Behavior 3

that of Kolmogorov and he recently, in a private communication, disclosed that

he has written a long paper concerning Kolmogorov's theorem. The publication

of this paper will appea_ ia a co_nn'_,:_=_ra_i_,._ _oium_ honc_'.__ng K_h_ogoro_.

During the years 1958- 1961, I also made an effort to give a full proof of

the statements of Kolmogorovo These results were published in the G_Jtt. Nach-

richten ( 1962 )o

c. To put these results into perspective and to prepare the path properly,

the lectures will be organized into the following parts:

I. Introduction

IIo Discussion of existence and nonexistence of integrals

IIIo Statement and discussion of Kolmogorov's theorem and
the annulus theorem

IV. Application to the motion of a satellite about an oblate
earth -- results of Kyner and Conley

V. Proof of a theorem by C° L. Siegel

H o Existence and Nonexistence of Integrals°

1. Conservative System, transformation theory --

Consider the system of equations of the Hamilton canonical form:

= -Hq (p, q,t) ; /1 =+np (p,q,t)

(1) P = (Pl' 'Pn )

q = (ql' ' qn ) '

and t is the independent variable. It is known that the canonical system of

equations is related to the variational problem

ll,_ L(q,dt,t) dt = 0, L =., p 61 -H(p,q,t)
:zJ= 1

An alternative representation of Hamiltonian systems was given by Cartan ( see

L?c_on sur les Invaria_lts Integraux, A, _:_ :_ana et Fils, Paris 1922). Any system

555
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,'=; = fv(P: q)

cl.,; = q, (P, q)

is Hamiltonian if there exists a function H such that the differential form

_-_ dp_dqp ,- dHdt
"u=l

is preserved_ i°e., if

n
d

d-_ (_L--"l dpvdqzj - dHdt)

Consider the following general transformation of the generalized coordinates:

p_ = Cv(u,v)

q_ = _Pv (u, v) o

In general, such a transformation does not preserve the Hamilton canonical form°

A canonical transformation ( i oe o _ one which preserves the Hamilton canonical form

(1) ) of the variables is required to preserve the differential form

n n

Z_ dp.,.dq, = ) du_dvz_

This condition is equivalent to

7_ _ ( _" }' ¢%` ) dUkdV _ + 3- 0 ( _,, _'_) dUkdUg
k,_! 8 (Uk_ v_ ) l_,---g 8 (,u k, u£ )

+ _ 0(_ , _ ) dVkdV _ = _ dUkdVk °
k,_ b (v k, v£ ) k

If the transformation is canonical, the new Hamiltonian is obtained by substituting

the new variables into the original Hamilton function. That is,

H = H[_5(u, v), _(u, v)] = K(u, v) o

Asystemis said to possess an integral, G(p_ q) , in some domain D , if

(i) the gradient (Gpp, Gqw) _ 0 in D,

(ii) G (p, q) is a constant along each orbit in the domain
phase space) ; i.e.,

n

d G(p q) = _ (Gp Hqw Gq_Hpzj) --- 0dt ' " _ - °
-z)=l

D (in

", :. i 5 5;6
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Stability Behavior

It is clear that if H is independent of ql ' then G = pl is an integral. Such

a situation arises frequently if the system is independent of some variables. The

existence of these ignorable variables can be used to reduce the order of the system.

Aocallv
More generally, it can be shown that if H has an integral G^, th_n in appro-

priate coordinates u, v the Hamilton H = H (u, v) is independent of u 1 and

G = v 1 is an integral. This statement is proved by showing that

v 1 = G(p,q)

can be extended to a canonical transformation°

a more general theorem° Let G 1' G2 '

n

_=1 (Gpp_G_,q_; - G/_q._ Gc,,pl, )

and ( _G__, _) is of rank n ;

then there exists a canonical transformation such that

The preceding is a special case of

, G be n functions such that
n

= 0 ; /_¢,_' = 1, ,n

v2_" = G/_.(p,q) , u2_ " = F A_.(p ,q) .

The preceding is a local statement°

In this case, one would have

H = H(Vl,V 2, ,Vn )

and fly = Hv , izz; = 0.

The solution to the system, therefore, is given by

u_ = Hvz,[v (0)]t+u_(0)

v_ = vz,(0).

In the following, systems of the preceding type will be called integrable.

2o We shall illustrate b:_ an example the manner in which rotational symmetry

leads to the existence of integrals° This example will again be discussed later ono

The example is that of Sttirmer's problem which deals with the motion of a charged

particle in a dipole field which is an idealized model of the earth's magnetic field.

The motion of a charged particle in a magnetic field

equation

m_ = e [Bx v] ,

B is governed by the

::_! 5 5 i
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where m, e., v are respectively the mass, charge, and velocity of the charged

particle. The dipole field is given by

B = C_zz grad r '

2 2 y2 2r = x * + z

By an appropriate stretching of the variables we can effect the normalization

e
wc -- 1,_
m

Therefore, the system equations can be written as

I
I

I
I

= [Bxv] 1
I

B _ _1
= 8---z grad r "

1

In order to write these equations in the Hamilton canonical form, we introduce the I

vector potential A having the components

-x |A" ( , r--3- , O)

so that

curl A = B o R

We introduce the Hamiltonian •
Ei 2 2 2

H = 2[(Pl -AI ) + (p-2 -A2)• + (p3 -A3)" ]

where q = (x, y, z) o

Then, if one eliminates p 1' P2 'P3 from the set of equations

q9 = Hpz_ = P_ -Ay

one finds

or

15zj - Hq_ = ./c_,(p_ -A/t_)At_q_ : _.q/t A "

'yq_ q,,

q = [curlAxdl] = [Bxdl] o

I
I

I
I

By inspection, it is apparent that these differential equations are invariant with

respect to rotations about the z axis° Therefore, it is appropriate to introduce

the cylindrical coordinates 0, w, z by the relations

X = W COS e

y = w sin (_

Z = Z o

I
I

I
558
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Sta bility Behavior 7

Extend this introduction of new coordinates to a canonical transformation by

introducing the new momenta

P0 = -p i y + P2 x

Pw = (pl x + p2y )-1
• W

Pz = P3 °

Using the new variables yields the new Hamiltonian:

1 2 2 +(P___ + w 2H = _[pw + Pz w r--3) ] °

This relation demonstrates that 0 is an ignorable variable, a result that has

already been anticipated. Hence, we have the integral of the motion:
2

2 w
G = p 0 w 0

Notice that G is not the angular momentum, which is w2 (_ o

This result is well known and serves to illustrate the uzual

construction of an integral by taking advantage of symmetry° The integral, G ,

serves to reduce the system to two degrees of freedom° Since P0 = constant,

and 0 does not appear in the Hamiltonian, one has a system for w, z which

takes the form "

(2_

where

@= -Vw W= Pw

= ,-V lb = -H ,
Z W W

1 lkti+ w 2 2 2 2
V = _( w r---_) ; r = w + z

Thus. in the meridian plane, the motion appears like that produced under the

influence of a potential force given by ( V w , V z) •

The integration, or study, of these equations is called "St_rmer_s '' problem

because StSrmer made extensive numerical studies of the solutions which were

later continued by Lemaitre., de Vogelaire_ and others° It is generally understood

tkat the system / 2) is not integrable, although this fact tins not been proven

3. To demonstrate the difficulty lying in the concept of integrability_ we

want to show that this system_ (2). indeed possesses 3 independent analytical

integrals in some part of phase space; although in the remainder of the phase

space, these integrals need not exist. Yet. analytic

 :59
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continuation of the integrals cannot be used to construct the integrals over the

total phase space.

To show this, we consider the differential equations (2) in the z, w

plane which have the integral

1 2 2
H = _ (_, +v_ ) +V.

1 2
This represents 1/2 of the sum of the squares of the velocities; i.e., _ (dl) •

For each trajectory, except the rest states, we can replace the time variable by

ct so as to obtain the normalization

2 ' or = 1.

Hence, we can study the orbits satisfying the relation

.2 2
z +_¢ +2V = 1 ,

or

I° wl_w+---_ - 1.

The inequality restricts the w, z plane to a certain admitted region which

has different shapes for different values of

G(z,w) = g.

Typical regions are sketched in the figure.

(_<)

g > 0 i i

?

t

iI

>g

I

I
I

I
I

I
I

I
I
I

I
I

I
I

I
I

I
I

I
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g_

f
/

-2<g<o/

/
/

' //

\,

x

g=-2 i

\
\

_2 / /'f /

in OUtSide region

rain w _ 1

9
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4.. Now it is easy to see that if g > 0 then for all solutions one has

r --->co as t --->ao.

The same situation holds if g < -2 and one is in the outside region. This

follows from a simple estimate for R = Jql 2 From the differential equation

one finds that

1 d2R 2
2 dt 2- = JdlJ + (q,q) = 1+ (q, [ B x ct] ) .

But, since

we have

3z k
B -- r--aq-r-Z

1 d2R

2 dt -2-

For g > 0 one observes that

R -->¢_o as t ---_co

1
= 1- r--_ (q, [k × dl])

1 2o
= 1+_3

= 1 + (g+-_-_-)

1 d2R
2 dt --2- - 1 thus R(t) is a convex function and

A similar estimate holds in the outside region of case

Therefore

1 g 2 1/2rain w = _ [Jgl + ( -4) ]

1 d2R

2 dt 2-- =
w __+ w

1+ r---_( w r--Z)

>5+

W

= 1 - (w 2 + z2)3/Z

We are then led to the same conclusion:

R --->ao as t ---> +¢x_ .

-_ l-w_ >i

$ since there

1 , with 5 0> 0 .

1

(1+b)2
D'> O .

Therefore, we have shown that

differential equation, one concludes that

---> 0(t- _) as t ---> +oo

q --_ a + o(t-_) ,

where a is a vector satisfying l al = 1 ,

that

q(t)-at-b ---> O,

lql -- 5"t for large t.

and, moreover,

since Jql --

From the

1. Finally, one observes

562
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Stability Behavior 11

take into account the fact that

ioe_, a,b and (a,b+_:a)

orthogonality relation

with a constant vector b °

Conversely, one can find a solution for every given a, b in the form

-1
q(t) = at + b + ct +

as a convergent power series expansion, if t is large enough. The proof of

these statements is quite straightforward°

Thus, an orbit q (t) can be specified by the vectors a, b . In order to

q(t) and q(t+T) correspond to the same orbit,

should be identical; we normalize a, b by the

(a,b) = 0o

Moreover, normalization of the Hamiltonian to H = 1/2 yielded

lal : 19
and finally, G = g corresponded to

(a,b,k) = g.

The components of the vectors a, b satisfying the above conditions represent

integrals in the part of phase space specified by g > 0 , H = 1/2 , or, the

outside region in case _, and H = 1/2 . That is, for every point P in this

portion of the phase space, follow the orbit through P as t ---> + ¢o to vo and

associate a ( P), b (P) with it. The six components are analytic functions and well

defined in this region. The preceding three restrictions,altogether provide 3

integrals independent of G and H ° Thus, we have the 5 independent integrals

which we wanted to show°

5° Nonexistence of integrals

In connection with the nonexistence on integrals, we have to discuss the

negative results which state that in general Hamiltonian systems do not possess any

integrals independent of H . The best known result in this connection in due to

Poincar_o Poincard's theorem has been criticized because it is not rigorous° A

different and rigorous statement has been given by Siegel which states that near an

equilibrium integrable systems are rare in the sense of Baire category_ We also refer

to the papers of Fermi and Moser. We shall not go into details on this subject since
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Dr Contopouloswill discuss the subject at length,

However, for our purposes we wish to emphasize that the concept of integra-

bility (or separability of the Hamilton-Jacobi equation) is not a "physical concept".

This is meant in the following sense. If the Hamiltonian is changedarbitrarily

little, the integrability of the system can be destroyed; i.e._ one cannot distinguish

betweenintegrable and nonintegrable systems if the Hamiltonian is known with only
a certain degreeof accuracy. However, in the following section we shall show that

the existence of a set of invariant surfaces can be guaranteedeven after small
perturbations of the Hamiltonian.

HI. Theorem of Kolmogorov

a Normal Systems:

Kolmogorov considered systems near an integrable system. Specifically he

studied "normal systems" which are defined as systems with a Hamiltonian of the

form

(1) H(p,q,ff) = H 0 (p) +_H (1) (p, q) + /_t2 H(2) (p,q) +

where H is analytic in all 2n+ I arguments, the qp_ (2J= 1,

angular variables and/ix is a small parameter. For .2.t =

integrable, and obviously p_ = constant, (y = 1, , n) constitute n

independent integrals of the unperturbed normal system_ One then hopes to find

independent integrals for small /o_ ° However, this hope cannot be realized for

arbitrary perturbations v The fact that the integrals may not exist follows from

Poincar_'s statement (Meth. Nouv. I, chapto 5) on the nonexistence of integrals.

Actually one would like to know the behavior of solutions to ( 1 ) in the large for

arbitrary perturbations. Kolmogorov's theorem does just this, at least for the

majority of the solutions°

Before stating the theorem,

unperturbed system° For let =

, n) are

0 , these systems are

n

we will discuss and interpret the solution for the

0 , we have

(2)

From ( 2 ),

(3)

Since the

q_ H 0 0
= pw(p) ; lbzv = -Hq_.j(p) = 0.

we immediately have the explicit solution

qu = H0 (p)t + qv(0) • Pz_ = p_(0)
Pz_ ' "

q 2/ were defined to be angular variables, we see that p_ = constant

,: :- 564
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represent n- dimensional tori in the 2n- dimensional phase space.. The solutions

(3) remain on these tori in phase space for all time; we express this fact by saying

that these tori are invariant under the flow. Writing

_z_ = H_ (p)

One sees from (3) that these _oz, represent frequencies of n oscillators°

As an illustration, consider the case _ = 2 and refer to figure 1o Since

qz_ (rood 27) _ we may identify points on opposite sides of the square with each

q2

8 1 3 5
2

/
/: //' ..

7 ,,//..../7

///.,/" j/.e _

0 ,, /

4 4

6 6
8 1 3 5¢T ql

Figure 1_

other.. This identification, ioe.., (0,q) with (2if,q) and (q,0) with

(q, 2q]') for 0 z_ q L_ 2qT gives rise to a two-dimensional torus° The solutions

on the torus, or the flow, are straight lines with slope a22 / b)1 o One can see

that for rational values of (A2 / a)1 , the solutions are almost periodic° Further-

more_ if tJ2/to I is irrational, one solution completely covers the torus and we

have the ergodic case°

Itwill be the basic assumption of the following that the frequencies

actual]y depend upon the "amplitude" p zJ which can be expressed by

0_ 02H 0 (p),

(4) det (_) = det ( 5p vi_p/u ) _ 0 o

We shall call such systems "non-degenerate"_ The contents of KolmogorovTs

theorem is that under small perturbations most of the n-dimensional tori can be

continued to nearby ineariant tori_ More precisely, we have:

b,, Theorem _ Kolmogorov) ' Let (1) represent an analytic non- degenerate

normal Hamiltonian system Then for sufficiently small /(( , there exist invariant

_, , 565
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tori

PzJ = fz'(gltl .... _n ) ; qz)

and the solutions on each torus are given by

+ 1 .... ¢n ) '

or _w = _o_t + ¢v(0) .

Furthermore, for every set of rationally independent

the inequalities

IA m_ a)v
,. C
- n

(_ [mvJ) k
u= 1

co I , .... _n satisfying

for any set of integers (m 1 ..... m n) _ 0 and k > 0, we have the

existence of such an invariant torus

Thus, tori on which the flow is ergodie can be "continued" under arbitrary

perturbations° On the other hand, tori for which the _y are rationally dependent

will in general disintegrate°

co Two degrees of freedom; reduction to a mapping

We will now discuss a more geometrical formulation of Kolmogorov's theorem.

In fact, the following formulation is stronger in the sense that only finitely many

derivatives of the variable are required, whereas Kolmogorov's theorem requires

infinitely many; i, eo, analyticity_ In doing this, we shall restrict ourselves to

2 dimensions so that the results can be easily described geometrically. The

generalization to higher dimensions does not introduce any new difficulties° Set

n(Pl,P2,ql,q2) = S0(pl,P2 ) +/aP(Pl,P2_ql,,q2,/tt)o

Since H does not explicitly depend upon time, we know that the Hamiltonian is

an integral and we write H = h °

0OH

_p2 ¢ 0,

we may solve H = h for p2 as a function of

equation of motion after the elimination of

Assuming that

(5)

dr _ i: _ H__q_1

dq 2 512 HP 2

d9 6 --
= "%'---"

dq 2 q 2 HP.2

P 1 ' q i ' q2 ° Hamilton's

t yields (with p 1 = r, q i = 8)

566
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We have the following picture in the 3 - dimensional phase space with coordinates
! r_ 0, q2 ) _ Figure 2o

JLI
!

Figure 2,,

/

q2 = 2_r

q2

The study of solutions to t 5) may be reduced to the study of mapping M of the

plane q2 = 0 onto the plane q2 = 2_. the mapping being generated by (5)o In

fact, choose 00, r0 arbitrarily in the plane q2 = 0 ; solve (5) for these

initial values to obtain

• 0 )0 = O(q2,e0,r
(6)

• or = r(q2,00, r0)

The mapping M is given by

0 1 = 0(2ff;00,r0) and r 1 = r( tff;0

For /_( = 0 , we can write this mapping, which we call M

( 5 ) in this case we obtain

• . a31
0 (q2'00' r0) = O0 ' _o2 q2

O' ro) °

0 'explieitlyo Solving

r(q2;00, r0) = r0 '

where _3 = 0i Hpi [PlP2(Pl'ql'q2 ) ] = Ki(Pi)

Therefore. <).__! = K1 (r) ,

_)2 K 2 (r)

and we define a)l
cO. 2fir

Calculating 0 1 and r 1 , we find

0 1 0 +_(r)

MO:
= r

r I

567

= K.¢r),
1 "

i= 1,2,,
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where we have dropped the "0" subscripts from

M 0 as the "twist" mapping° Thus we may write the mapping M

_ 8 1 = 0+_(r) +F(r,0) ; 0 _ a d r L_ b
M:

r 1 = r+G(r_ 0) ,

where we do not explicitly exhibit the /_ dependence of

As a consequence of the Hamiltonian, we find that

This follows from the well known fact that the differential form

Z

dp_dqy - dHdt = dr dO + dP2dq2 - dHdt7)=1

is preserved for the Hamiltonian systems. Since H = h and dq2

that the "area" element

M is area preserving.

0 and r . We shall refer to

in the form

F and G.

M is area preserving°

= 0 _ we find

dr dO is preserved for the mapping M ; this means that

Let us now examine what happens to integrals and periodic solutions under the

mapping M ._ Any integral is of the form:

GiPl,P2,ql,q2) = F(0, r) = constant

and under the mapping goes into itself° Therefore,

F(_}, r) = constant = F(81, rl)

and thus the curve F (8, r) = constant is invariant under M.

A periodic solution with period 2_q satisfies (see (6) )

00 = 0 (2_q _ 00, r0) = 0q

r 0 = r (21iq ; 00, r0) = rq

Hence, M qF = F_ where F is the point

of the mapping M q °

(00, ro) and F is a fixed point

The question we now pose is whether of not the mapping M has closed

invariant curves near the circles r = r 0 which are invariant curves of the twist

mapping° The following theorem states the conditions for which the mapping M

possesses such closed invariant curves. For the formulation of the theorem we

introduce the following notation.

If h (r ? 0) is a function with continuous derivatives up to order s , we

568
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denote the s th derivative norm by

I 0 o- 1]his = sup (_)

where r, 0 ranges over the domain

_-_) h(r,0) ; 0" 1 +0- 2 _-

in which h is defined.

S

d Theorem (Moser) : For a given _" > 0 and a given s-_ 1 the

mapping M has a closed invariant curve

0 = 0 '_'+p (0 '_)
_7_

r = r0+q(0'),

where the functions p, q are functions of period 24/" with s continuous

derivatives satisfying [P[s + [q[s _ e under the following hypothesis:

Assume for the mapping M that every closed curve r = f(e) = f(0+2"ff)

near a circle and its image curve intersect. Assume further that b - a -_ 1 and

¢8) COIL d {r) _/_ CO" dr '

for some constant C O > 1 .. Finally, we will construct a positive number

60 = 50 (_' s,C0 ) and an integer @= _ (s) with which we require that F

and G have continuous derivatives up to order _ and satisfy the inequalities

<9) Irlo + IGIo< _o

+ IF[t + IG#_< Co

Moreover, we assert that the mapping induced on the curve (7) is given by

= 0_+_( °(10) 0_1 r0)

We remark that there exist many invariant curves which can be labelled by their

rotation number _(r0 ) = _ in (10). In fact, given any a3 in

(11) ¢_(a) + e < (.J<'x(b) -

for which _/2qr cannot be closely approximated by rationals:

(12) Into - m2¢[ -_ En -3/2

for all integers n, m with n > 0 , there exists a curve (7) with this rotation

number, ¢o= _(r0) "

A difficulty in the proof of this theorem has its analytical manifestation in the

so- called small divisors. If we now draw our attention to a circle for which
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c_(r) = 21Tp/q _ we observe that the entire circle consists of fixed points M q

The quest for a continuation of such a circle would suggest the search for a curve

of fixed points of M q However, it is well known that in general only a finite

number of fixed points of M q will exist (in general_ 2q)° This phenomenon

corresponds to the phenomenon of phase - locking in ordinary differential equations°

One can say that in general the curves with rational _/2Y cannot be continued;

they break up into finitely many points.

e o An extension to the Theorem (Moser) :

In part IV of these lecture notes we shall wish to apply the mapping theorem

to the oblate earth problem° It will be found that for this problem, the twist ¢_ (r)

is small, i, e o, depends linearly on the parameter _ and so we shall need a result

that takes into account small twists We describe such a result now°

For this purpose we introduce a parameter 7. in 0 <1_t --4 1 and write the

mapping M in the form

@1 = @+,_d_(r) + F(r 8)) +6
(13)

r 1 = r+_G(r_0)

where r ranges over a _ r L b , b - a -_ 1 and

Theorem (Small Twist) :

statements of Theorem (Moser)

,6= constant.

Under the assumptions ( 8), (9), (9') the

remain valid if one replaces { 10) by

' = @ +/t_(r)01 1 ....

The number _0 = 50 (s_' C0 ) can be chosen independently of

that in this form the unperturbed mapping of (13) is

Note

O 1 = 0 + y_(r) +_/

r 1 = r

where the variable angle of rotation /_ (r) ranges over an interval

(flt_(a) ,/zoo(b) ) which will be small for small values of _ o In this case it is

not clear whether there is a number a) satisfying (12) in such a small interval.

Therefore we modify (11) and (12) to

f14) o_(a) + e < _ < _(b) -
• ..,fit

-3/2
(15) In_o- 21Tm I -_fllen

570
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Then the density of admitted a_ in _ 14 _ will be close to 1 °

fo The condition: _ ? _ 0

The assumption cx' _ 0 , if interpreted for the original Hamiltonian system:.

doesn't quite agree with the assumption of non-degeneracy in Kolmogorov's

theorem° While it expresscs the fact that all frcquencies a21 , ° . o , a) n actually

vary independently of the variables p i ' ° ° ' p n " we require only that the ratios

co_./:oi ' 'J =

H0 (P i' 'Pn ) = constant. For case of

0 0 0
H H H

PlP2 PlP2 Pl

0 0 0
_ 16) H H H

P2 p 1 P2 P2 P2

0 0
H H 0

Pl P2

We shall demonstrate (16) ° Recall that

H 0(r,p2 {{E)_ ,
(r) = 2_'H0 (r,p 2 (r)

P2

where p2 (r) satisfies H0 (r,P2) = h and

implies that

2 ..... n vary on the (n - 1) - dimensional surface,

n = 2 _ this implies that

0

Pl = r. on' (pl) = 0

0 0 0 0 0 0
(17) H (H + H p_) - H (H + H p' ) = 0

P2 PlPl PlP2 Pl P2Pl p2P2 2 "

0 0 0 0 0
S (n H -H H )
P2 PlPl P2 PlP2 Pl

0
But from H (Pl_ p2 ) = h, it follows that

0 0
H +H p'2 = 0.

Pl P2

Thus (17) becomes

(18) H 0 (H 0 H 0 -H 0 n 0 )
Pl _ P2PI P2 P2P2 Pl

The left hand side of (18) is merely the determinant in the inequality (16).

¢x, (r) # 0 implies (16).

Thus

57i
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IVo Oblate Earth Problem°

a° Introductory discussion:

The observation that the oblate earth problem can be approximated by an

integrable system was observed by several authors; see Sterne, Garfinkel and

Vinti.

As Professor Brouwer pointed out, this problem can be approximated by

the two center problem which is known to be integrableo

Therefore, Kolmogorov's theorem is applicable to this problem. In fact_

we shall show that in appropriate coordinates we can find a Hamiltonian H

for the oblate earth problem dependent upon a small parameter /u such that
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(1) H(p,q?p_) = H*(p,q,/_) + O(__ 2)

as amplified bv Arnold
where H _ is integrable. Kolmogorov's statement._ v_ill then be applied to the

system (1) and conditions determined which insure that solutions to (1) can be

continued for arbitrary perturbations. The work discussed here is part of the

current research of T. Kyner and Co C. Conley and will appear in print elsewhere.

For the oblate earth problem we assume that the gravitational bulge of the

earth is rotationally symmetric about the z-axis and symmetric under the reflec-

tion z_ -z . The potential U(x_y, z) is harmonic outside the earth and dies

out at ¢x_ ° The potential can be expanded in the following form as a series of

Legendre polynomials°
ao e

I U = n_ n2n (cos 0)= 0 r P2n

cos (} = Z/ro

I As a first approximation to the earth's potential one finds

_M r0 2
u = ---r [ 1- J2 ( r ) P2 (c°s 8) + "

2
where 3 cos 8 - 1

P2 = 2

r = radius of the earth
0

M = mass of the earth

and measurements of the dimensionless quantity J2 yield the approximate value

J2 _" 1o082 × 10 -3 ,

J2 is rather small.

The problem is to discuss the solutions of the equation of motion

i_ = grad U.

Normalize the units of mass, length and time so that M = 1, r = 1, _' = 1.
0

J2 ' which is of the order of 10-3 is considered as a small parameter. In

normalized form the potential is

(2) U = l+r P2(r )"

potential represents a better first order approximation for an oblate earth that the

simple central force potential.

,57 3
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bo Integrable approximation°

If one admits a change of the potential U

we can replace the potential by

2
(3) U = -Re [x2+y + (z+i J_2 )

in (2) of the order O(j2) ,

2 ] - 1/2

The simplified oblate earth problem can be reduced to the problem of a masspoint

moving under the mutual attraction of two fixed

mass points° If a masspoint of mass m is

placed at (0:,0_ c) _ the potential at point

is

m m

(4) R - [x2+y2+ (z-c)2 ] 1/2

z !

P /
/ fJ !

- R _n (c) Pn(Z} x

(0, O_ -c) I m I

1

'85) determined the polynomials I

,'
!

In fact_

p _z_o
n _r

this is the manner in which Legendre (1785)

However_ the preceding configuration

approximates the attraction to an "ovary"

ellipsoid instead of the desired oblate

elhpsoid° This difficulty can be circum-

vented by choosing c to be purely imaginary

and superimposing two such complex conjugate "ovary" "oblate"

one finds in (3) and (4) with c = iJ2/2- . The result ispotentials as

U = Re [x2+y + (z+i )2

co

i _ (_l)n i 1)
- r n=0 r2n J2n n

Since r

] 1/2

is restricted to the exterior of the earth, r -_ i ,

LJu- l-"
r 1 _J__2 1-J 2

r

,' 574
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e° Int__rability in elliptic coordinates°

We use the following fact (see Wintner, Celestial Mechanics) •

If 1 _ 2
H(p,q) = [__.pz, Cz_(q_) + Z'b_(q_) ] [_a_(q_) ] -1 ,

where ap. b_ and c_ are functions of the variable qv alone, then the system is

integrableo That is, for H = h , the motion is given by quadratures.

statement, transform t by

on

Then,

Since on H =

we can use c{

c = _av _ or

dt = c (p_q) d_

H = h

p_ = cHn

q' =-Clip °

h _ we have

[c(H-h) ]q = cHq

H - h) as the new Hamiltonian, wherever this vanishes. With

dt = (Za v) dT,

To prove this

we find the new Hamiltonian:

_ 2
1 _-_c_p_ + Tb_(q v) -h_av(q v) = ____H> ,2

where each HV_ depends on p_, q_ only. The solution 'is obtained from solving

n sets of simultaneous differential equations of order two,

p_ = H_,
q '

q_ = H_pj

separately, under the side condition

2) = 1,2, _n

,"H j = 0 °

Consider the system,

(5) H =

where

We have that the potential is only a function of

which has the Hamiltonian

1 2
Ipl +V(q),

2 y2 jl/_2,.U(q) = -Re [x + + (z+i )2]

2
x2 + Y and z °

Introducing the cylindrical coordinatesxy - /iy.is an integral.

- 1/2

z and O_

This implies that

w = (x2+y2) 1/2

we find that the new variables are defined through the relations:

pdq = PxdX÷pydy+pzdz

= PwdW+Pod0 +pzdz

,. . 575
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Thus

X = W COS @

y = w sin 0

Z --_ Z

PxdX + pydy + pzdz

C = COS @

s = sinS;

= (px c+pys) dw + w(-Px s+ pyc)d8 + Pz
dz

or

Hence,

Pz = Pz Pw PxC°S 8 • P9 = w(-PxS+pyC)
2 2 2 2 P82 2

IP12 = Px +Py +Pz = Pw + _ +Pz

1 2 2
H = _ (pw+pz) + V

p2
V =2-_ + U (z, w)

and the differential equations of the system are

_ _ V

W

z

In the above

PO = w ( -px

is the angular momentum,.

sin8 +pycos 8) = pxy -pyX = ky- _x

We have therefore, reduced the system to two degrees of freedom, using

p8 = constant and ignoring the equation 0= f(z, r,p0) °

To fit this problem into the integrable form mentioned above, we use elliptic

coordinates; this was also done by Jacobi for the problem of two centers ( see

Charlier I_ po 53).

The potential had the form:

a 2 _2 - 1/2V = w---B-+Re [w + (z+i )2]

After an appropriate stretching, one can reduce this to J2 = 1 by replacing w

with w J_f_2, z with z_ . [hen J2 --> 0 corresponds to studying the motion
2 +with large distances Iwl Izl .

d_ Elliptic Coordinates

Put 2 2
w + (z+i) =

(see Magnus and Oberhettinger_

(_+i_) for 0 L_ _ < O0

i,

p. 198)
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or 2 2 2 2
w +z - 1 = g -_/

z = _W

(1+ g2)('1- _2) = l+g 2 2 2
2 2 2 2

W +Z -Z = W

I Thus_ z = _

w = [(1+_2)(1 - 2)]1/2,

I _ _- const
which are defined for 0 L_ g 4 O0 • -1 L -_ z_ +1 .

i These are well - defined n:f/f
except for _ = _= 0 _ _ =c° : ....

which corresponds to the

,  irc,ew.. oo!

@
I

I
I

I

The surface of the earth can be thought of as an ellipsoid of rather large _0

g= go

and

Note that for our case, U takes the simple form

U =-Re(_+i_) -1 _+_- 7?2
1 1 1

w--2- - (1+_2)(1-;_2) = ( 1+_2 +
1 1

1-_'2) _2+_/2

Extending the transformation to a canonical one using

we find from

that

and

where

p_dg+p_d_/= PwdW+pzdz ,

2 g2 +_/2 2 _2 +.if2 2
(ds) = 1+_2 (d_) + 1->t 2 (d_) ,

1 2 2 1 2)p52 2T = _ (Pw +Pz ) = 2(_,2+ _t,2 ) [(1+_ + (1 __/2)p ]

1 1 [(1+_2)p2+ (1-_2)p_] + vH - 2 (_2+_2)

V- 2(1+_2)(1__Z ) - _2_+7_2

i P__2_i i i: _2+_[ ,-_+_-_ + 1-_[2-)]

:_ ' 5 7 7
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We can now write

H =
1.y(2 [1 _2) 2

1 i 2) 2
+ _2+_2 [_(1- p_

P_ 1
2 (_)-_1

+ (1 -_7 2 ) ] '

which makes the integrability evident ( see IV c), with

el 1+_2 2= c2= 1-> _

al _2= a 2 =7 2
2

bl P82( 1 P8 ( 1
= 2 1+-'-_ ) -_" b2 :-2-- 1---':-_)

In particular, we have the integrals

1 2 } _2H 1 - 2(1+_ )p + bl(_) - h( ) = h I and

H 2 (1-:_ = h

In principle, the whole solution is contained in these formulae;

formulae are unwieldy and rather useless for numerical calculation_

1 2 p_ (2= _ ) + b2(- _) - h ) 2 = h-h I

howeveL the

More important than the explicit formulae is the fact that the problem at hand
2

can be approximated to terms of order _( by an integrable one:

H(p,q,2_ ) = H*(p,q,/_) +O(/x2).

Since H* takes the linear terms of order /c( into account, one can hope that the

motion described by H* is not any more degenerate. This one could check by

computing the periods (elliptic integrals) from the explicit formulae. This procedure

is still very involved°

Let us denote the two frequencies of

691/a_ 2 0 or is integral. Note that

n 1_1 + n2_) 2 , n _ _o1 + n 2_2' so that

a+ b_---£

_o2
c+d_9 2

is unimodularo Thus,

(6)

H by _1'4)2 _' Then for ,A* = 0 ,

cO1 , aJ2 can be transformed into

_I/W2 could be rational and constant ifitvanishes in some
coordinates.

Kyner computed, that in appi_opriate coordinates

_1 ¢r 2 2

(02 =/(_p--2 cos i 0 (1- 5 cos i0)

2
/L( = _ J2 and p = ±y-x_

5 7 8
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The expression (6) contains the information necessary to determine whether or not

solutions to (1) can be continued for arbitrary perturbations° In order to see this

we shall now pass to a discussion of (1) in phase space and set up an approximate

mapping°

e o Discussion of Phase Space°

We consider the solutions corresponding to negative values of

described by setting (5) equal to h :
1 2

(7) _ I_1 +V(r,z) = h< 0,

where q = (x,y_ z) o The momentum integral is

h o These are

p = :_y-x:_ = (_t×q,k)

where k = (0o 0:. 1) ° Clearly

(_) Ipl -_ Iqllql = I_1"r,

and equality holds only if q, dl, k are mutually orthogonal. This means that equality

holds only if one is in an equatorial orbit which is also a circle_ or at perihelion_ or at.

aphelion°

Eliminate i Cl] from ( 7 ) and ( 8 ) to obtain the inequality

2

1 rP-2 + U _ h ¢"02

or 2

i9) _ - r + O ) z__h < 0 °

(10)

For

We shall assume that
2

0< -h< L
2

= 0 , the locus can be found to be the space between two spheres_

read from the following figure.

_-r

2
r=p

I I

h_--'-- i___1

...... r

579
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For small values of z_ , the inequality (9) also describes a similar shell region.
This leads to the observation that under the restriction ( 10), the solutions of the

differential equationnever approach r = 0 or r = _, which are the only singu-

larities° Therefore_ all solutions satisfying ( 9 ) initially can be continued for all

values of t , and remain in that region.

2 y2In the meridian plane there is an apparent singularity at x + = 0 _ since

2 x 2 2
V = U + P@ /2( +y ) However,

dimensional description.

f. Surface of Section -- Conley

Just using the fact that U depends on

symmetry, allows us to deduce some qualitative features.

U(r z) = U(r_-z) °

We already know that for z = 0
2

2r-_ + U = h

has two roots: r = r 1, r 2 and that

2

-R-- +U < h in rl< r _r 22r 2 °

this singularity disappears in the 3-

r and z alone, as well as the

It follows from ( 5 ) that

We wish to describe every orbit by its intersection with z = 0 , the equatorial plane.

One variable would be @ , which we can ignore. Therefore, we can set @ = 0 :, or

y=0:

p = ±y-x:_ = -x:_ r = x > 0 ;

1 ±2 2 _2)Hence, H = _ ( +_ + + U = h.

Using 5_ = -P/x* we have

1 :_2 2(11) _( +_. ) = h-U(x,0)- __ .

Thus, for every x in

rl< x<r 2 ,

0<rl<x(r 2 •

one has an associated equation which describes a circle, since the right hand side of
rl, < x <. r2

( 11 ) is positivei_ ann zero ior r = r 1 _ r 2 . This can be visualized as the surface of

a topological sphere symmetric with respect to z ---> - z and having coordinates
.2 2

x: x +_. = R(x).
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X

We now consider the flow

_ ,_V

X

Z

in the 3-dimensionalpart of the phase space (x,_:, z_ 2) where H = h . In this

3- dimensional space we consider the two-dimensional surface o" of initial values.

Points with 2 = 0 correspond to equatorial orbits. In fact_ the equator 2 = 0 is

invariant under the flowo We shall concentrate our attention on the upper half for which

_. > 0 o This part of the surface, o-+ _ is a surface of section in the sense of Birkhoff.

That is:. every interior point is intersected by a solution (since here 2 > 0) o The

boundary of 0-+ represents orbits in the equatorial plane.

Every point in (r'+ corresponds to an orbit with given h , p o Conversely_

every orbit with given h, p intersects o-+ ; in fact, infinitely often ..... except for

the boundary. This follows from the fact that

I

I
I

I
I

I

I

(12) OU(w_ z)
O(zZ ) > o,

holds in the shell r 1 - r z_ r2 which is verified in our case for smal____ll/_ , since

DU 0 2 Y2 2 -1/2 1 -3/2
=-bz---_(x + +z ) = _ r > 0, for/_ = 0.

Ou ,. _ ) 0 and
Hence, Oz---2 -

5U
= -Vz = -Vz (w, z) = -2_. z

) 2Dz > 0.

_oo_,_v 2 _ < _ it follows from the oscillation theorem that z

2 zeroes in every interval of length greater than

_>0°

has at least

7"/"(25) - 1/2 , and one of them has

581
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properly
Therefore, one canAdescribe any orbit with given H = h and p = _-:-2h

by points on o-+ with coordinates x_ _ .

point

go Mapping.

The flow of the differential equation can be properly described by following

p on 0"+ along an orbit to the next point of intersection.

We now follow the work of Conley, who suggested that one identity or'+ and

(thelowerhalfof or) by (2_V¢) ---> (-z,+_)°

According to our preceding arguments, every solution intersects

infinitely often -- alternately° Following the solution for increasing t _,

sequence of image points

P0 --> Pl --> P2 _ ° ° °

and P0 --'> Pl defines a mapping M of the disc g-+ onto itself,

being invariant ...... -....... .

/ × Pl
I

\, xP 0 /
\ /

This factimmediately demonstrates the existence of a fixed point

mapping M ; i.e.
MF = F

J

by Brouwer_s fixed point theorem° For small /_

be in the interior of _+ o The solution through F

respect to z --> -z o For _x = 0 _ we have the circular solution°

The preceding arguments show the existence of periodic solutions_

definite restriction.

(r+ and v-

we find a

the boundaries

F of the

this fixed point, can be shown to

is periodic and symmetric with

without a

about the angle 3_-_

For the case /u = 0 , this mapping can be verified as a rotation

the domain being a disc° On this disc the 2 -differential form

d_Adx + d2Adz - dHA dt

is preserved under the mapping M . On z = 0 _ H = h , the differential form

reduces to d_ A dx , which is the element of area on the surface o-+ . Therefore_

M preserves the area element, which is certainly the case for a rotation°

Kyner investigated this mapping and showed that in appropriate coordinates, the

mapping is a rotation about the angle

211" - 2 2 2
= _'+ --3 J2 p cos i 0 (1- 5 cos i0) ,

where i 0 is the inclination angle°

582
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rI =

in a disc where

__LrA
2¢r

and
_t

Here the inclination

One sees that

h. Conclusion.

We have seen that in appropriate coordinates

= 0+_'+ia_,(r ) +O(_ 2)

r + O (yu2 ) ,

the mapping M has the form

.

_ 2cos I (i_ 5 cos i)
2%r-

2
= 3J2

i is related to r _ the energy h _ and the momentum p .

o¢ is not a constant and so our theorem concerning annulus

mapping (with small twist) is applicable if /ct is sufficiently small. We find a

set of invariant curves, which for small /t_ cover all points of the disc with the

exception of a set of small measure.

This implies_ for the solution of the differential equations

(/v = - Uq.,,,

z +_2F( z--1[1-rflr2 P2 (r)U = - r

F(z, r,_) = F(-z,r,/tt) ,

the existence of a set of almost periodic solutions.

H = h

and _y-x_ = p >_/-2h ,

these form the majority of the solutions°

, r,/u) ]

For any value h < 0

To make this statement somewhat more precise, we recall that the system was

reduced to two degrees of freedom:

8V
8w

5V
3z

w = tx 2 +y2) 1/2 ,

and the invariant curves correspond to almost periodic solutions

_), ¢ (t)]w = gl [_1 '" 2

z = g2 [gS1 (t), _2 (t) ]

where gy( ¢t 1, ¢2 ) have period 2_r in (_1' _2 ,and

553
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Finally,

yielding

Combining this,

where

= cop 22= 1 2

the variable 0 can be recovered from

= w-_

0 = 0(0) + O0t+g0(q_ 1, ¢2 )

we find that in the original coordinates

g_(t) = f_((_0'(_l _ _t2 ) ; _= 1, 2, 3 ,

f_ have the period 2ff in 50), , ( _( = 0, 1,2) and

The application of BirkhoffVs fixed point theorem shows_ moreover, the

existence of infinitely many periodic solutions of our system.

for the first time for the following problem°

(1)

Proof of a Theorem by Co Lo Siegel.

ao In a paper by Co Lo Siegel_ the problem of small divisors was overcome

Let

z 1 = F(z) = _z+f(z)

f(z) = _ akzk. k__2 '

be a conformal mapping near the fixed point

there is a substitution of variables

(2) z = 5 +u(_)

z = 0 . According to a known result,

such that in the new variables the mapping is linear and of the form

(3) _1 = _ '

provided that ])_1 _ i f 0 . However, Siegel's result refers to the case for which

I_1 = i ° This situation can be considered as a model case of the small divisor

difficulty.

It was shown by Cremer that for unit roots Aq = 1 _ and even for numbers

on I)_1 = i _ which can be well approximated by unit roots, such a substitution cannot

exist° In other words_ it was shown that the formal expansio_B2n_ust diverge for a

particular choice of f and I_1 = 1 , when /_ is closely approximated by unit

roots.
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The contents of Siegel*s theorem_ however,

is badly approximated by unit roots; eog. _.

I I -1 -2_4_ _z{_ 1 = c O z_ for -_= 1 2 c O _ 1

there exists a substitution z = _ + u (]_ } given by a convergent power series

expansion° In particular, this implies the stability of the mapping. The iterates

= F(z i)
n-

Z
n

is that for _k on [2[ = 1, which

are given by
z --_; +u(_ ),
n n n

where
_'n = _n_o

We wish to give a proof of this theorem using the ideas of Kolmogorov° Siegel's

proof is intricate and makes use of the fact that I_. _ - 1 I is only rarely small_ while

our proof will just use the estimate (4)o Even though this proof may not be in the

literature, it is a. direct application of the concepts used by Kolmogorov and Arnold;

the latter mentioned to the author, by informal communication, that he found a proof

of this type. We use this proof as an illustration of the principle°

bo One could proceed directly to construct the power series expansion of u

by comparison of coefficients which are obtained in a unique way and then proceed to

prove the convergence of the series thus obtained. However_ the last step is just the

true difficulty: and we shall_ instead, obtain u by a succession of substitutions

_icoordinate transformations) each approximating the desired transformation to a

higher degree° In fact, the convergence will be faster than the usual convergence

and_ therefore, the effect of the small denominators does no harm.

Co To turn the prooL we construct a coordinate transformation

_5_ z = v(S) = _ +v(_)_

which transforms the mapping into

(6) _i = _ + ¢ (_) '

which is approximately linear° A simple calculation shows that

v(_'l)-_v(_') = f[_+v(_)]- ¢(_;)o

To make _) small_ solve the "linearized" equation (linearized with respect to

v. f. ¢) o We set

5 $ 5
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(7) v(_(_)-),v(5) = f(_) o

The solution to (5) is readily given° If

k
f(z) = _ f k z

k-_2

them by comparing coefficients_ one obtains

(s)

This formula exhibits the small divisors, ] xk - _l

We shall now show that this choice of v leads to a _ which is smaller than f ;

thus we will have achieved a closer approximation to the linear mapping° This is shown

in the following lemmao

!

!

!
k_ fk kv(_) = -2 Ak- _ "_ •

|

d, We shall assume that f is analytic in

let If] < _ in IzI < r

and let jo be chosen so that

0<p<r= io

We set p = r-4h > 0 and prove:

Lemma-- If v is chosen according to (8) ,

by (6) , then there isa constant

Iv_i < c (r- ]0) 4

2
6.

I_1 < 2c ir io)5

provided that

(9) c£ <_1
(r- ]0)5 2

First we find an estimate for

Ifkl <

Iv, I

c depending on

in I_'l< r-h

in

i z I < r _ where r -_ 1 . Moreover_

and if the transformed mapping is given

c o only such that

v _ and v .

_- _ __. k(k-1) 2 (L_r_)k-1
r k__2

z_ Co_ _ (k+ 1)k 2 (l_r)k z_
r k=O

Using Cauchy_s estimates for the

6c0 _ z(k+3)(k+2)¢k+l)r 6 ' ( )

6c^_ 6eoEr3

(I- )4 - h 4 (r- _)4 ; c = 6 °4 4 e 0 o
r

Proof:

fk we have

!

!
!

I
!

!
!

!

!

!

!

Thus,
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Similarly_
Ivl &

2CQE

r "

It follows from _ 9 ) that

C_

(10) (r - p)4 <

Then using ( 10 ) we have

,11) iv_I < 2h < 1
r 2

Furthermore, since cO 3, 1

(12) _< h5( h

I Vl k z- 2c0C" k__2_ (k+l)(k+2)2 ([_Jr)

3
c_r

12(r- p)3

2h

2r r

for I_1 < r- h

then (9) implies that

c,-.r
<

4 (r - p) 4
)

k

The inequality (11) implies the following:

_o The circle I_'1 •)° = r-4h is mapped into

Izl _ )o + Ivl <)o + c_r
4(r -jo) 4

1
< _)+ _h < r-3h,,

/d_ The image of I_'I< r - h covers at least

Izl < r- 2h;

io eo in Iz l< r - 2h, the inverse mapping is defined and gives Y with Irl
1

Statement (/_) is a simple consequence of the implicit function theorem

_r,-ho

1_ If z = ]" + v (_) in lyl < r - h , and Ivq K 2h/r z 1/2 in lYl < r - h ,

then for jzl < r- 2h there is a _ such that J_l < r-h o

Proof" We construct the inverse mapping _ = z + w (z) by iteration in the following

manne r:

Set w 0 =

and Wn + 1

as long as IWnl<

For those indices we have

IWn+ 1 - Wnl

0

= -V(Z+W
n

ho

) , for Izl < r- 2h

max Iv'l " Iw -w I
Izl< r-h n n- 1

e[w -w I
n n-1 '
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With the preceding assumption we see that _1 = _ + _ is defined in I _'l < p o

Namely, if I_1 <P = r.-.4h, then by (_) we have Izl < r-3h and by assumption

IZll = I)lz+f(z)l,_ Izi+ifl< r-3h+ G<r-2h by (12) °

Since in ]Zl[< r- 2h, the inverse map of Zl = _1 + v(_'l) is defined, we have

from (/;) that _1 is defined and is IJl[< r-h ° Thus _ is defined in I_'1< _ .
I{ remains to estimate (# in i_lzj_ ° Subtracting (7) from the equation preceding

it, we see that

!l'()) = -v [l_"+ ¢(_)] + v(_:) +f [Y+v(_[) ]- f('_) _

+_)1 L r hor, since I_1( = I,_I' - - ,

max t_ [ = max
I_;I<_ [z_<r-h

From (11) max Iv_[ _ 1/2 ,

so that 1

mpax[_l -_ maXr_hIf'l°

In I_l < r-h If'l_e/h sot_at
c_

max I¢1 _ 2
p - (r- p)5

which thereby proves the lemma°

[v'l" maxl¢)l +
_,l/F)
Sgj

max I vl
r-h

max {f'l ° max Ivl
I _l<r- h z r - h

e. Iteration°

We start with a mapping

= F(z)=z 1

and in this region assume that

a transformation

Zz+f(z)

Ifl<%°

z = Ul(Z(1) )

such that

z (1) z(1)
i = +fl (z

where z(1)< rI and fl = _"

repeat the procedure again and again,

in I zl < 1 = r0,

Applying the preceding lemma, we construct

(1)) ,

We now use a new notation because we shall

constructing a transformation

2h __iwhere 0 -
r 2

Iterating, we obtain

or

Thus

or

]Wn+l-W [ = O
n

n

<

Iw nl< h for all

lwi _ h

l"_/ = Izl +h 4 r-2h+h

nlwl_Wo [ = onlv/= 0n+l r4

(Wv+l_W)1 z_ (0+02+. . +0 n+l

r
= 20 7 = h1---Z_ r

n o Now the convergence is obvious, so we have

= r-h
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StabilityBehavior 36

(n- i) (n)) (n)z = U (z . = z +u (z
n n "

F into
n-i

(n) F (z (n))
Zl = n

we have to diminish the radius of validity.

Iz(n)I<r
n

which takes the mapping

At each step,

and max ,-lfnJ= n
rn

Our lemma now guarantees that

provided that

(13)

6 _- 2c
n+l

2
Cn

(rn - rn+l )5

ce n 1
(r - )5 _--

n rn+ 1

We have to choose the decreasing sequence

which makes

But since _n

show.

(n))

Therefore, we set

so that it does not tend to zero,r
n

rn - rn+ 1 very small, and thereby endanger the convergence of Cn

enters quadratically, we obtain a convergent sequence as we shall now

1 1
Let r = -- +

n 2 2-"

then r 0 = 1

r -_ 1/2,
n

1

and rn - rn + 1 = 2n--fi-+-Z

Hence, 2c ° 25(n+2) E 2 L_
&n+ 1 - n

with c I = 211c o It is easy to deduce that

z (c2_0)(2 n)@n

and thus $ _ 0 providedn

(c2_0) < 1.

To verify the condition ( 13 ),

2 (2n) < 2-5n- 11
c (c 1 60)

n+l 2
c 1 6 n ,

we show that we can satisfy the inequality

This is obviously possible if G 0 is sufficiently small, i.e., if
4

c2 depends only on c O ° For instance, c2 = c I will do.

Thus we have established that the sequence of mappings F

g_ 1/c 2 where

in fact, converges quadratically.

n
converges, and_
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It remains to relate the new variables to the old variables. This is accomplished I
m

with the transformation

z(n,- 1) (n))

= U (zn I
or

, U2 o (n)z = z /O) = U1 o o o U (z (n)) = V i z" ) °
n + n +

This transformation is defined in I z(n)[ < rn and satisfies [Vnl < r 0 : 1 I
n n

and V'(z(n))n = V I'° V 2'° V'n =_=i'_" V'z_=S=l(l+u_) _ I
and the convergence of V (_) follows easily fromn

= +0 c2_-c4 Ilull (c2 ) 2z_

Therefore° if '_0 is sufficiently small, the convergence of the iteration

procedure is established° That means, the mapping I

z 1 = _z + fo (Z) in [zl< 1

with [fo I < _0 can be transformed into the linear mapping (3) . I

Finally, we show that we always can choose _0 arbitrarily small° Suppose

the given mapping is

Z 1 = A z+f(z) in [z[< r ,

Then with z = rz* + we have in [z*[_ 1

:+: 1 ,.) . f.zl*' = z ' +--f(rz = _z + ( zr

1 .)where [f*(z)l = I rf (rz I

_- r max If"I

[zl< r
which can be made arbitrarily small° This concludes the proof°

*),

I
I

I
I

Conclusion: The proof of the theorem on the annulus mapping uses very

similar ideas, but the estimates are much more complicated° The details can be

found in a-paper, "On Invariant Curves of Annulus Mapping_ " G6ttinger Nach° ( 1962)°

Another difference, in the case of differentiable mappings, is that the approximate

transformations have to be smoothened -- i¢ e°, approximated by infinitely differentiable

transformations°

Although these technoques look quite different from the usual methods of celestial

mechanics, there is a strong resemblance in this approach to von Zeipel+s method. If

I

I

I

I
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Stability Behavior 38

F = F 0 (x) +y.F l(x,y./_) *

is a Hamiltonianr which for _a = 0 is integrable, then Kolmogorov"s approach

consists of the construction of a canonical transformation

x = _ +},u (_,_7)

Y =_7+p'v(_,_)

which transforms F into the Hamiltonian

F = 0(_,_) = 00(_) +O(/zt 2) ,

which deviates from an integrable Hamiltonian only by terms which are quadratic
2

in /_ Repeated application of this procedure leads to quadratic convergence.

This shows that the technique for removing the angular variables remains

as it has been previously. The new feature is that the expansion method has been

replaced by an iteration procedure in which the domain of applicability is carefully

controlled° Since these methods are so rapidly convergent, it can be hoped that

they can also be made useful for numerical computation°

:* x = (x 1 ..... Xn) ' Y = (Yl .... Yn ) and Y2_ are angular variables.
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Lunar and Solar Perturbations on Artificial Satellites

Peter Musen

Goddard Space Flight Center

Greenbelt, Maryland

Lecture notes prepared by Ralph Deutsch.
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Lunar and Solar Perturbations. 1

The long- range ( secular ) effects caused by the moon and the sun are of primary

importance for establishing the stability of highly eccentric orbits of satellites. At

present no complete analytical theory exists that can treat such orbits. Thus we have

to resort to numerical integration to obtain information about the stability of the orbit

over a long interval of time or about the lifetime of the satellite.

Methods based on the use of an unaveraged disturbing function, such as those of

Cowell or Ercke, contain both short- and long-period terms. For artificial satellites

these methods require that the interval of integration be much less than the period of

the satellite, thus causing a large accumulation of round- off errors. The main long-

range effects in the elements are produced by the long- range terms in the disturbing

function and by their "cross actions". The short-period terms can also produce

long- range effects through their mutual cross actions in higher approximations, but

such effects are very small, and over a very long interval of time, they can be neglected.

For these reasons, as well as to diminish the accumulation of round-off errors, it is

necessary at the very beginning to remove the short- period terms from the disturbing

function or from the components of the disturbing force.

Musen [ 1 ] suggested the use of Halphen's [ 2 ] form of the Gaussian theory [ 3 ]

as a practical method for determining the long - range effects through a step - by - step

integration. Previously Halphen's method was not in use, probably because of several

numerical errors in the original publication. All of them were corrected by Goriachev

[ 4 ], whose name should be associated with the method as well; the method in its

present form could justly be called the Halphen - Goriachev method. Some parts of

Halphen's original exposition can be easily recognized from the modern standpoint as

an application of the calculus of dyadics ( matrices ) in a hidden form. The problems

connected with the determination of directions are sometimes sources of errors in

Halphen's original presentation.

In Goriachev's work all the formulas given in the final collection are correct,

but there are some misprints in the theoretical exposition, which are corrected in

reference [ 5 ]. Musen [ 1 ] suggested the use of Goursat [ 6] transformation and

the E summability to speed up the convergence of hypergeometric series that appear

in the Halphen- Goriachev method and to facilitate numerical computation.
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Lunar and Solar Perturbations.

Let:

m' --- mass of disturbing body

m = mass of disturbed body

Disturbed

body

The disturbing force is

_ r'(1) F = k2m ' ( - r,---_) ,

(2) }o = r' -r.

I

2 I
P • I

sturbing

./ { I

and l '

Thus

If the disturbing force is developed into a double Fourier series with arguments

the secular disturbing force [ F ] is equal to the constant term of the expansion.

k 2 m' - r'
(3) iF] = _ ( -r-r3 ) d/d/'.

Thus [ F ] is deduced from ( 1 ) by applying a double process of averaging over the

orbit of the disturbing body and over the orbit of the disturbed body.

The "area integral" for the disturbing body can be written in the form

(4) d_' = (r'2dv ') /a'b' .

Hence 27[ r' /277I [ d_' = I

(5) 2--@ J0 _ 21ra'b' J0 r'0dv' = 0.

Thus the indirect part - r' / r '3 of the disturbing force does not produce any secular

effects, and (3) becomes

k2m, /2'ff[2q
(6) iF] -- 27( J0 J0 'p_ d_'d_.

I

Let F 0 be the average of [ F ] over the orbit of the disturbing body. Then

k 2 m' d_'
F0 = 21[

In the process of determining F 0 , the position of the disturbing body is imagined to

describe the complete osculating ellipse. However, we are interested neither in short-

period terms nor in knowing at what moment of time the disturbing body will occupy a

particular position in its ellipse. This process of averaging is evidently a purely

geometrical one.

The geometrical locus of vectors p is an elliptical cone with its apex in the

disturbed body. Taking (4) into account, we can also write

I
I
I

I
I

I

I
I
I
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Lunar and Solar Perturbations.

j02;k2m ' r,2
(7) F0 - 2 a'b _ dv'.

If we consider two neighboring position vectors p
lr_2

disturbed body m, then _ dr'

the center in the central body. L',

Using ( 7 ) and defining t_

m' r '2 dv'

(8) dj_ = 2 a'b' '

we deduce

and p + d/o with respect to the

represents the area of an elementary sector with

The integral is taken along the ellipse of the disturbing body in the direction of the

motion. Equation (9) represents the Gaussian result: F 0 is equal to the attraction

of an elliptic ring over which the mass is distributed proportionally to the area of the

sector described by the radius vector r'

Based upon the preceding theory, a collection of formulas has been obtained and

programmed for the actual computation of long - range effects in the motion of artificial

satellites, minor planets, and comets, using step-by- step integration, [ 5 ]. For an

artificial satellite, Halphen's method might give the information of the long- range

effects and the stability of orbits over intervals of approximately 15 -20,years. For

minor planets, it can supply long- range (secular) effects in the elements of motion

over the interval of hundreds of thousands of years. The integration step can be taken

to be 100-500 years.

5:_
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Heat Transfer. i.

I. Introduction.

There are many important heat transfer problems in

which a material changesphase or in which one material

is transformed into another. The melting or solidifica-

tion of a substance, such as the formation of ice or

solidification of castings, is an example of the former;

the progress of a temperature-dependent chemical reaction

through a solid is representative of the latter. The

first published discussion of such problems seems to be

that of Stefau (1891) in connection with a study of the

thickness of polar ice; therefore, the "freezing" problem

is often referred to as the Stefan problem.

The essential new characteristic of this type of prob-

lem is the existence of a moving surface of separation

between the two phases. Heat can be liberated or absorbed

at this interface, and the dynamic and thermal properties

on either side of this surface can also be different, so

that the problem is of considerable difficulty. The motion

of the interface has to be determined to obtain a solution

so that the problem is nonlinear. For special cases,

exact solutions have, nevertheless, been obtained. See

Carslaw and Jaeger (1959) for further discussion and de-

tails of such problems where conduction is considered to

be the only heat transfer mechanism.

Considerable new interest in problems of the general

type mentioned above began to be shown in the early 1950's

in connection with the cooling of vehicles which reenter

the Earth's atmosphere. At the hypers0nic speeds of re-

entry, the hot gas in the layer between the bow shock wave
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Heat Transfer. 2.

(Fig. l) and the body is partly or fully dissociated.

,,÷,,_+_,,,,_.r,o;_t
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Strong concentration gradients are produced when thls mix-

ture of atoms and molecules enters the boundary layer

around the body and heat energy is transferred toward the

surface, partly by diffusion and partly by heat conduction.

Recombination reactions occur in the bounda_ layer, and

some of the gas components may react wlth the vaporizing

surface material. In addition, the hlgh-veloclty, high-

temperature air flowing around the body leads to aero-

dynamic heating and heat convection. The details of these

phenomena are extremely complicated, but it has been shown

by Lees (1956, 1958, 1959a)and Fay and Riddell (1958) that

the heat transfer rate from the gas depends primarily on

the total enthalpy difference across the boundary layer,

and not on these details, provided that the ratio of mass

diffusivlty to thermal dlffuslvity of the gas is nearly
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unity, i.e. that the Lewis - Seminov number, Le = Pr/Sc =

_D12 Cp/K = l, where Pn = Cp _ is the Prandtl
number, So =_/_D12 is the Schmidt number, _is the

gas density, D12 is the mass diffusion coefficient between

species 1 and 2, Cp is the average specific heat at
constant pressure, _ is the thermal conductivity, and

_ is the absolute viscosity coefflclent_ The additional
3

effects occurring when the Lewis - Semlnov number is not

equal to unity are discussed by Lees (1958).

At hypersonic speeds heat is also transported to

a body by radiation from the hot gas in the shock layer.

However, from the work of Kivel and Bailey (1957) it can

be deduced that for most entry trajectories, the radlative

heat transfer rate from the gas is much smaller than that

by convection except for direct entry into a planetary

atmosphere at near-normal incidence, in which case, gas

radiation can be dominant° However, infra-red radiation

away from the body is important at high temperatures.

See Lees (1959b) for additional comments on radiation.

The net effect of all this is that the peak reentry heat

transfer rates for ballistic missiles with a low drag to

weight ratio are of the order of 2500 - 3000 Btu/ft2/sec,

which results in a power input of 15 kilowatts over an

area about the size of a small postage stamp.

The use of a solid heat sink i.e., a gaod thermal

conductor, to keep body surface temperatures at reasonable

values was shown by Soloman (1959) to be inadequate at

the large heat transfer rates associated with ballistic

_ 604



Heat Transfer° 4.

reentry° Therefore, other means of thermal protection

are necessary° Consequently, forced mass transfer systems,

i.eo, transpiration (fluid injection) cooling devices

and self-regulatlng mass transfer systems, i.e., ablative

processes were considered. Of the two, the latter showed

the greater promise°

The term ablation refers, in general, to processes

in which surface material is removed together with an

associated amount of heat. However, this process can

occur by any one or combinations of the following

phenomena :

(1) melting, possibly in conjunction with vaporiza-

tion of the molten layer. Such a process occurs when the

heat absorbed by the ablating material causes two phase

changes. Materials which lead to this type of behavior

are usually said to be glassy° Typical of this class

are refractory oxides such as quartz, fused silica, and

Pyrex glass. These materials are characterized by

high viscosity at elevated temperatures and the viscosity

decreases rapidly with small increases in temperature.

In addition, these materials have quite low thermal con-

ductivities, good thermal shock properties, and high

heats of vaporization. All these properties aredesirable

for ablation materials. Since the melting and vaporization

temperatures for glassy materials are relatively high,

surface temperatures as high as 3000 - 4000°K can be

attained during reentry or similar conditions and re -_

radiation from the hot surface can be appreciable.

' ' 605



Heat Transfer. 5.

(2) sublimation, which occurs when the static pressure

in the shock layer is below that of the triple point of

the material. Under such conditions the liquid phase

of the material cannot exist. Thus, the material goes

directly from the solid to the vapor state as the temper-

ature increases. Sublimation thus basically refers

to a physical change of state. Similar _results, from a

thermal protection point of view, can be also obtained

by any one of the following forms of chemical decomposition

of an ablating material; The distinction is, however,

that a chemical change occurs with the latter:

(a) depolymerization, when a complex hydro-

carbon polymer breaks down into a number of monomers due

to chemical reactions at high temperatures. The monomer

may then react with any oxygen in the surrounding gas by

acombustlon process thus increasing the heat transfer

to the ablating substance. Many plastics such as polytretra

fluoroethylene, commonly known as Teflon fall into this

category, i Although there are exceptions these materials

also have very low thermal conductivlties and low heats

of vaporization° Some of these materials, like Teflon,

decompose (sublime)at low temperatures (and lowheat

transfer rates) and the surface temperature remains

at or below the sublimation temperature. This fact

together with the low thermal conductivity minimizes the

heat conductiDn problem for such materials, but also

precludes any beneficial effects of re-radlation.
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(b) pyrolysis of the solid phase, due to thermal

decomposition of molecules at high temperatures• For

organic compounds this usually results in the formation

of such gases as methane, acetylene, or hydrogen and a

solid char-like residue• Thls process is not one of

combustion so that it need not occur in the presence of

oxygen° Complication may occur since combustive reactions

usually occur between the gaseous hydrocarbons produced

and the oxygen in the surrounding air. This type of

process is usually associated with reinforced plastics

such as phenolics and polyesters with glass, nylon, and

asbestos reinforcing fibers. In contrast to the low

temperature sublimers, such materials as phenollcs sublime

at high temperatures and, therefore, can have surface

temperatures of several thousand degrees kelvin. The

re-radiatlon is, however, complicated by the erosion of

the char.

(c) surface combustion which depends on the oxida-

tion process of the material. Graphite and carbonaceous

materials are typical for thls type of ablation.

In each of these processes there is essentially a

moving interface, whose motion must be found. Since,

as was indicated above, the relatlvely simple problem of

pure heat conduction wlth a moving interface was difficult

to solve it would appear that the additional complexities

associated with aerodynamic ablation vlz., aerodynamic

and pressure forces resulting from the surrounding high-

temperature hlgh-velocity gas stream, mass transfer,

chemical reaction, etCo, make the description of the

considerable work on thls type of problem has been done.
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Since it is the purpose of this series of lectures

to show how so complex a physical phenomenon can be

analyzed theoretically attention will be given only to

materials which melt before they vaporize. Although

materials of this type do not offer the best thermal

protection for balllstlc-type reentry (as will be

discussed below) they are of considerable interest in

other regards. Also the rather extensive work dealing

with melting ablation affords numerous examples for the

present purposes° The work of Lees (1958) and Roberts

(1959) are representative of treatments of subliming

materials and that of Scala (1959) reviews the studies

of decomposing materials°

The principal thesis of this lecture series is that

deductive rather than inductive methods are essential for

the description of new and complex phenomena, that is,

specializations from the most general situation should

be made in studying such problems rather than making

generalizations from simplified cases. In this way, not

only is a deeper understanding of the problem obtained

and the primary physical aspects retained, but also the

Justifications and limitations of the simplifications

are explicitly indicated.

2. General Considerations.

In order to control the ablation process it is

essential to have as clear a detailed description of the

associated phenomena as possible. The heating mechanism

has been described above; the physical mechanisms of melting
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ablation will now be discussed. It should, however,

first be noted that some materials that melt before they

vaporize have a distinct melting temperature whereas

others, like glassy materials, do not. Attention will

be given herein only to the latter type; the differences

in the formulation between the two is shown, for example,

by Chert and Allen (1962)°

As the material is heated, energy is absorbed in the

solid phase by the material's heat capacity. The surface

temperature rises and the viscosity decreases (i.e. the

substance melts) and more heat is absorbed by the latent

heat of fusion° When the viscosity becomes sufficiently

low the material starts to flow under the influence of

the aerodynamic shear and pressure forces and body forces,

if they are of sufficient relative magnitude. This repre-

sents the onset of ablation and heat is then also convected

by the motion of the liquid layer. It is also passible

that the liquid layer will reduce the radiation transfer

from the hot gas to the surface° Since viscosity of such

materials increases essentially exponentionally with

decreasing temperature the flow of material is confined

mostly to a thin layer very near the surface. As the

ablated material flows it is further heated by aerodynamic

heat transfer and some of it can vaporize as the surface

temperature of the liquid layer increases. Good ablation

materials absorb a large amount of heat through vaporiza-

tion and/or decomposition. However, more important than

this absorption are the phenomena that occur in the gas

boundary layer as a result of the addition of foreign

material vapor. These phenomena result in lower heat

transfer _ ^- _- _^+ __ _ _ __ _ _

"blocking" effects. This reduction in the heat t_ansfer

6O9
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from the hot gas by adding mass to the gas boundary layer

results from the absorption of heat by the vapor due to

its heat capacity as it diffuses through the gas boundary

layer and by changing the gas boundary layer velocity and

temperature distributions (and, in some cases, the gas

transport properties)° The latter have been extensively

studied (see Lees (1958), for example). As the material

flows downstream along the body, it may reach a region of

lower heating and freeze there; if not it will continue to

behave as described above.

Thus, the entire complex nature of the physical

problem is now apparent. On the gas-side of the moving

gas-liquid interface not only are there the aerodynamic

and radiation heat transfer phenomena to be considered, but

also the influence of foreign mass addition on these must

be accounted for; on the liquid side the coupled dynamic

and thermal phenomena must be treated. Finally the

mutual influence of one side on the other results in a

problem to be solved that is orders of magnitude more

difficult than the Stefan problem, which is the classical

problem of heat transfer with a moving interface.

The question now arises how to proceed to analyze

a problem of this sort. Due to the urgency for practical

answers in the nation's embryonic space program emphasis

was first placed on the rapid acquisition of gross design

criteria from simple analyses in conjunction with some

experimentation. A survey of these design techniques is

given by Adams (1959). This work was limited to aero-

dynamic forebodies (in particular to their stagnation

region); also only gross characteristics such as heat

transfer and total material loss were Of primary interst.

On the basis of such work, interest in the dynamics and

heat transfer of melting layers waned when it was found
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that the vaporiZation effects were dominant for thermal

protection, particularly for ballistic-type reentry.

In addition to the design studies there were attempts

made to describe the melting ablation process in detail.

It is this work which will be discussed in some detail

herein. Recently manned-vehicle reentry with its relatively

low-intensity long-duration heating during which melting

can occur before vaporization has restimulated work

on melting ablation. Perhaps the greatest impetus for

continued studies of this kind is provided by Chapman

and his co-workers (1960), (1962a), (1962b). They

applied entry flight dynamics and melting ablation theory

to the question of the origin of tektites. Briefly,

tektites are natural silica glass objects of similar

composition that have been found in seemingly disparate

regions around the world; furthermore they bear little

resemblence to the local terrain in which they are

found. (See Baker (1959) for an extensive account of

tektites.) On the basis of existing ablation theory

Chapman has implied that some of the tektites are of lunar

origin. Clearly more detailed information on melting

ablation is necessary to determine the validity of this

assertion. In particular, most tektites are distinctively

characterized by concentric ring waves on their surfaces

and the relation of these waves to the dynamics and the

heat transfer of the body must be established.
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3. Inductive Analyses.

Most all the approaches to determine the detailed

characteristics of melting ablation are based on inductive

reasoning, i.e., special models are analyzed in the hope

that they will indicate the significant general behavior

of melting layers° One of the earliest analyses of this

type appears to be that of Landau (1950). He treats the

problem of the melting of a solid under the assumption

that the liquid is immediately removed on formation.

This prime assumption is presumably made on the basis that

the large aerodynamic forces would lead to such behavior.

Clearly, then this model denies any important role of the

liquid layer, but other than intuitively, this assumption

is not as yet Justified. The distinction "_atween Landau's

problem and the Stefan problem is that in the latter the

liquid is taken to remain on the solid and, thereby,

influence its heat transfer; in the former the liquid

plays no important role. Landau suggests that his analysis

could also apply to the case of sublimation, and it seems

as if his "model" does, in fact, more closely simulate

that case.

To obtain some general results and an idea of the

structure of the problem, it is first formulated somewhat

generally. Specialization is then made to obtain more

detailed results. Consideration is, accordingly, given

to the one dimensional heat conduction in a solid which

initially extends from X = 0 to X = a. Heat is considered

to flow into the solid through the surface X = 0 at a

rate H(_) per unit area. The other surface, X = a, is
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taken to be Insulated. If heating continues long enough,

the face at X = 0 reaches the melting temperature Tm
and melting starts. Note that this analysis does not

pertain directly to glassy materials which have no

distinct melting temperature. The liquid is assumed to

be blown away immediately on formation so that the surface
of the solid at X = 0 moves inward and at time _ is at

the position X = S(t). If the heating rate H(_), decreases

enough, the surface temperature can become lower than

the melting rate so that S(_) remains constant; melting

can resume if H(t) increases sufficiently. The temperature

of the solid T(X,t) and the thickness melted S(_) are

the quantities to be determined; their existence and
uniqueness are assumed on physical bases (see Boley

(1963) for a uniqueness proof).

The process is governed by the dimensional equa-

tion expression conservation of energy for unsteady,
one-dimensional heat conduction, viz.:

Pc AT_=
_ 8X ) for S(_)< X_a

and the boundary and initial conditions:

T(X,O) = To(X) _ T m O_ X_a _=0 (3.2)

c_T = 0 X = a _ :> 0 (3.3)
clx

H(_) = -k _ + PL dS__
dE

x = (3.4)

where _denotes the density of the solid, c its specific

, ..-.:
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heat, k its thermal conductivity, T the temperature,

the time, X the distance from the initial position of

the heated surface, T o (X) the initial temperature

distribution, and L the latent heat of fusion. The

physical interpretation of the initial and boundary

conditions expressed by Equations (3.2) and (3.3) has

already been given. The last equation expressesthe fact

that the heat input H(t) equals the rate of heat flow

into the solid plus the rate of heat absorption by

melting. Equation (3.4) will be valid both during

melting and non-melting if it is specified that at the

heated surface X = S(t).

dS > 0 for T(S(t), t)= Tm (3.5)

dt

dS = 0 for T(S(_), _)_T m (3.6)
d_

To eliminate the moving boundary from the boundary

conditions let

_'= (a-X)/ [a-S(t)]

The boundaries are then fixed: at

Equations (3.1) to (3.6) become

a-s dE

0_ <l, _>o

I

I

l

l

,(a_s)2 ( )

(3.1a) I

I

6.t. 4

I

I
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T(X,O) = To(_)<T m

| _=o _=o,

o__ 1, _ = 0

I
I
I

I
I
I

I
I

I
I

I

I

I

t>O

H(t) = _ o_ _. d'_

I d_SS _>O for T(1,t) = Tm
dE

dS = 0 for T(I,E)< Tm
d_

_= I, t_O

(3.2a)

(3.Ba)

(3.4a)

In this form the nonlinearity of the problem is

readily apparent from the fact that S and its derivative,

which occur in the coefficients of the differential

equation, depend on the temperature gradlent (see Equa-

tion (B.4a)), This nonlinearity constitutes the

essential difficulty in determining the unknown moving

boundary S(E). Landau obtains some qualitative results

on the melting rate and time and expressions for the

temperature distribution in terms of the moving surface

from the above boundary value problem and he suggests

that numerical methods be used to obtain explicit solutions.

To obtain a more tractable mathematical problem,

Landau (1950) considers an even more special problem

than the above. On the basis that in practice the melting

will proceed only a relatively small distance into the

solid he assumed that the body can be taken to be semi-

infinite, i.e., a--, oO . Also it is now assumed that

the specific heat, c, the thermal conductivity, k, the

initial temperature T o and the heat input rate are all
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constants with H_0. Even though the variation of these

quantities can be important in some cases, the greater

detail obtained from the solution found by taking them to

be constant is considered to Justify this assumption.

The boundary condition given by Equation (3.3) now

becomes

T--_ 0 as X--_ ao E_ 0 (3.7)

which is equivalent to

T---_ To X--_oo , E_O

I

The temperature distribution T(X,t) during any period I

where there is no melting is not difficult to find, when

c and k are constant. Various well-_own methods such as I
i

the use of Luplace transforms (Churchill (1944)) or the

method of sources and sinks (see Chapter X of Carslaw i

and Jaeger (1959)) can be used to find that it is
I

g
_ X2 |

T(X,t) = T O + 2H(_ _i ) _Xp ( __"_=) -

erfc Fx ]_x !

2( 5) |
where_=k/_ c is the thermal diffusivity and ierfc denotes

the integral of the complementary error function in the I
I

notation introduced by Hartree (1935-1936).
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The time when melting starts, tm' (at X = 0) can be

found from Equation (3.8) to be

m = _4 CH_ (Tin - TO)2 = _ (_-_ m )2

(3.9)

where

'IT
m =

A.
2

c(T m - To)

2 L

represents the ratio of the heat content change from

T o to Tm to the heat of fusion with a convenient

multipllcative constant. Transformations will be made

below such that the entire problem is expressed in terms

of only the one parameter, m.

For the semi-inflnite case being treated now the

moving boundary can be eliminated from theboundary

conditions by introducing a new coordinate, X - S(t)

which is the distance measured from the moving interface

of the solid. Since only the melting process is of

interest, time will be measured from tm. To make the

equations dimensionless, the following new variables

are introduced

9:91(Z , t)=

T - T O

_I"_ (Tm-To) (3.10)

617
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_ x - s(_)

Z- (¢_tm) _ (3.11) I

t =--_ -1 (3.12) I
m !

_= _ _ (_

I

Thus the heat conduction equation and the initial and I

boundary conditions become: 1

= + m _ (t) _-_Z Z • 0 t > 0 (3.15) 1

@ = ierfc (_)
Z > 0 , t = 0 (3.16)

O'_,' 0 Z --_o t_ 0

I =-2 _ @ + _(t) Z = o ,

1

9,=V[ -_ Z= 0 ,

(3.17)

t_0 (3.18)

tZO (3.19)

This formulation is particularly convenient for both

numerical and approximate solutions because only the

single parameter, m appears in the differential equation

and no parameters occur in the initial and boundary

conditions.

i

I

I

i

I

JiB .
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Equation (3.18) should be regarded as the defining

relation for the unknown reduced melting rate _(t).

I

This quantity can be eliminated from the equations by

substituting it from Equation (3.18) into Equation

(3.15). Thus, it follows that

I ___ = _2@ + m [i + 2 _,t)]

i < Z2
which is clearly nonlinear.

I

I

I

I

I
I

I

(3.15a)

A number of special cases of the above defined

boundary-value problem are amenable to further analysis

and can give worthwhile information. Firstly, a steady-

state (tlme-independent) solution willbe sought for,

i.e., one in which the temperature of the melting,

semi-infinite solid approaches a state characterized by

the inward movement at a constant velocity of a fixed

temperature distribution. For continued heating it is

clear that the temperature must increase or remain

constant with time, i.e.,

@/@ t _ O.

Since, from Equation (3.19),

| -½

it follows that S 9/_ t--_ 0 as t--_o and that @

tends to a steady state. If _ 9/8 t = 0 then ¢ is
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constant, say _ = _c, the constant steady-state value of

the reduced melting rate. From Equations (3.15) and

(3.17) through (3.19) this steady state is found to be

@---_ @(Z) --"_-½ exp(-m _ cZ )

with

c= (l+2m_-=)-I

For the steady state rate of melting in terms of dimen-

sional variables, there follows directly from Equations

(3.14) (3.18) an d (3.20)

dS

_-->v = H

which is perhaps physically obvious. To obtain the

thickness melted Equation (3.21) would have to be

integrated. However, the heating rate is in reality not

constant as given by Equation (3.21) for the steady state.

Therefore, integration of Equation (3.21) gives an

approximation (for constant melting rate) for the thickness

melted which is

S(t) _V(t - tm) (3.22)

and the corresponding approximate temperature distribution

is obtained from Equations (3.9) through (3.11) and

(3.20) to (3.22) as

+ (Tin- T )exp_V_[x - V (t- tm)l_ (3 23)T TO o

IJ

I
I

I
I

I
I

l
I

I
I
I

I

I

I

I

I
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Actually, the melting rate is initially less than its

steady-state value, so that Equations (3.22) and (3.23) give

values that are too large.

To obtain the proper asymptotic (for large time)

expression for the thickness melted, one starts with the

complete unsteady heat-conduction equation, Equation

(3.1). Upon integration of this equation over a region

in the X, t - plane, application of Gauss's theorem and

the boundary conditions there is obtained (See Landau

(1950) for details) an equation expressing the equallty

between the total heat inflow to a given time and the

sum of the change in heat content in the remaining solid

and the liquid. This last equation can be solved explicitly

for the thickness melted to give (in dimensionless form)

- 2 @(Z,t) dZ ) (3.24)

o

The asymptotic or steady-state value of_ is obtained by

use of Equation (3.20) in (3.24) and is

I _-(t)-_c(t + 1

!

I W (t)--_6C'c (t) = _c (t + i) - 2/_ ½m (3.25)

or, in dimensional form

S(_,) = Vt, - (k/H) (Tm - To )

The corresponding exact steady-state temperature distri-

bution is

621
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T = To + (%- TO

21.

) exp - _-- X- Vt + k (Tm - To) /

(3.27)

Since 9 (Z,t) increases with t, in general, it

can be seen from Equation (3.24) that the steady state

value gives a lower bound for the thickness melted.

Also since from Equation (3.8)

OO

_[_9 (Z,O)dZ= Jlerfc (Z/2)d_ = ½

o o

an upper bound is obtained from Equation (22), that is,

V(t - tm)__ S(t)2 Vt - (k/H) (Tm - TO )

The difference between these two bounds is

k(Tm-T°) [(IH 1 - _ + C(TmL _ To))-i ]

I

I
I

i
I

In practice, this last quantity is often small so that

the steady-state value is a good approximation of S(t )

for all t>t m.

By taking derivatives of Equation (3.24) it is

found that the melting rate is always less than its steady

State Value, i.e.,

I
I

I

_s < w |
d_

Physically, this result is also obvious since the heat

content of the solid is inoreasing during the melting.
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!
I
I

I

I
I

The next approximate solution of the boundary-value

problem defined by Equations (3.15) to (3.19) is the

unsteady one for m = O. The parameter m In Equation

(3.15) can take on any positive value. The value m = 0

does not correspond to a physically realizable situation

but it can be considered to be a limit when the latent

heat, L, becomes large. In this case the boundary-value

problem can be solved in terms of tabulated functions.

This solution is of value since it is one limit of the

set of solutions for OLmL_; also it will represent

an approximation for any finite m when the dimensionless

because then _(0) = 0 and the lasttime, t, is small,

term of Equation (3.15) vanishes for that reason.

For m = 0 the equations are linear. The solution

of Equation (3.15) does not involve Equation (3.18);

the latter serves merely to find the melting rate _(t)

from the solution. For this case then the solution can be

written as

i erfc(Z/2t)I f_=?7"-_ + (4_7"t) -_ ierfc (+)@o(Z,t)

_exp _-(Z4t _) 2] [- (_ t_) 2]_. - exp _ d_ (3.29)

The indicated integrations are quite tedious, therefore,

only the final result is given as

@(Z,t) T_ -½ erfc(Z/et) - (_7-) arc tan (t -½) +

(t+l)/_] g exp [-Z2_4(t+lllerf_Z/2 [t(t+l)l

+ 2ZW (Z/[2(t+l) ] ' t-2) (_3.30)

_:: !;, 6 2 3
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where

w(N,_') = (2,rr)- o o
exp _(x2 + y2)/2 Idy

is a function tabulated by Nicholson (1943).

The dimensionless melting rate corresponding to

this solution is

Io(t) = (2/(F) arc tan (t _) (3.31)

l
I
l

l
I

and the melt thickness is

_-o(t) = (2_-)[(t+l)arc tan (t½)- t½] (3.32)

Note again that these can be considered as approximations

for small dimensionless times.

The other limiting case, m =co, can be interpreted

as that for no latent heat (L =0). For steel with T o

as the room temperature, the value of the parameter m

is 27, which is "practically infinite" in the sense that

the temperature and melting rates will be close to those

for m infinite.

For L = 0 the definitions of(_-and % by Equations

(3.13) and (3.14) must be modified. Therefore, quantities

independent of L are defined as

2 HS (3.33)

_= m(T'= _-_ k(Tm-To) ,

I
I
I

1 I= m _= dCO _ _ _C (Tm _
dt 2 H

,_ ', 624

To) d__A_S
d_

(3.34)
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i Equation (3.15) is now
_ o_20

_E2I _ +_(t)
Z_o t_0

(3.35)

and the interface condition, Equation (3.18), is

1 = -2 _ _ = 0, t • 0 (3.36)

There is thus no equation defining _that is similar to

Equation (3.18) for _ . However, from Equation (3.19),

_9/at = 0 at z= 0 so 'that if the derivatives are continuous

at Z = O, t _ 0 Equation (3.35) gives

i o_20_ + __ -_0 Z=O, t_O

I
I
I

I

I
I

I
I

and by use of Equation (36)

/_ (t) = 2-_
@Z2

Z=O, t> 0 (3.37)

which takes the place of Equation (3.18). The modified

boundary-value problem for the case m = cx_ is then defined

by Equations (3.35), (3.16), (3.17), (3.37)and (3.19).

It is to be noted that no important mathematical

simplification resulted by considering the limiting

case m =_O as it did for m = 0. Landau, therefore,

obtained solutions for the case m = @o by numerical methods

after first rewriting the problem in terms of the depen-

dent variable a @/@Z so that/_would be determined with

greater accuracy than is possible by numerically obtained

_ond derivatives (Equation (3.37)). The results of

".... 625
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his solution for m = 0 and calculations

shown on Figures 2 and 3@ In Fig.
%

for all m, the values of _ approximate

for small values of to Fur_thermore

steady state more rapidly the larger

curves in Fig o 3 approach unity as

ordinate on this figure for m

_/_6 -') It can be seen on
this

large the slope of the curves near

large.

I.O

.8

.7

I

25. I

for m _> 0 are

2 it can be seen that •

m te those for m = 0

_ approaches its I

r the value of m. The

an as_nnptote. (The I

=(x_ is _/_¢ rather than

figure that as m becomes I

t = 0 becomes very

The thickness melted is also presented by Landau.
g

!

0
0
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For large valves of m it would seem that the last

term in Equation (3.15) would be dominant and that the

other two terms could, therefore, by a perturbation analysis

be shown to be negligible. However, such an approach

leads to a singular perturbation problem, i.e., one in

which the highest-order derivatives (here both the ones

in the variables t andZ_) would be eliminated. The

order of the differential equation would be reduced in this

way and, as a consequence, all the boundary and initial

conditions could not be satisfied. Therefore, the highest

derivative terms cannot be neglected near the boundaries

although they may be negligible away from them. On this

basis it can be concluded that in problems of this type

the derivatives of the dependentvarlable near the boundaries

shouldrbe very large. Such problems form the basis for

the so-called boundary-layer theory of viscous fluids.

See Lagerstrom et al (1949) and Friedrichs and Wasow.

(1946) for further discussion of such problems). For the

present problem then it is to be expected that in cases

of m large, the time and space derivatives of the dimen-

sionless temperature, @, should be very large for small

time (t_ 0) and near the surface (z_0). This qualita-

tive behavior can, of course, be determined before any

calculations are made and should be made then. In this

way, one can make certain that small enough mesh size is

taken in regions where large derivatives are expected.

Relatively simple observations, such as were made above,

which give qualitative trends are most helpful to avoid

errors in the numerical calculations and to shorten the

computation time. Note on Fig. 3 that the type of behavior
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predicted by the above analysis is, of course, obtained.

Landau (1950) gives no such discussion in his paper but

does mention in the course of his formulation of the

numerical procedure that rapid changes are to be expected

at the start and, therefore, small mesh sizes are to be

used there.

In accord with the above discussion note, on Fig. 3,

the difference between the curve for m =co (L=O) and those

for all other values of m (L _ 0), the former does not

satisfy the initial condition, i.e., that the melting

rate be zero at the start of melting. This behavior

also was predicted in the discussion above and explained

on the basis that the highest derivative is eliminated

at the limiting value of m. This situation is analagous

to the neglect of viscosity in fluid mechanics in which

case nonzero tangential surface velocities are obtained

rather than zero values. Landau merely points out that

this discontinuity in time does not influence the

continuity of the spatial temperature gradient (_ T/_ X),

but says nothing more about it. However, this says

nothing about the continuity of T with respect both to

time and space and no temperature distributions are

presented in the paper.

The result of Landau's analysis of a model which

neglects any influence of the liquid on the heat transfer

process is that melting rates and temperature distribu-

tions for unsteady one-dimenslonal conduction are obtalned.

Obviously, nothing can be said about the heat transfer

around a given body from this analysis. The melting

rates then are of value to give indications of local

ablations, and the temperature distributions also lead to

estimates of local heat transfer.
J

628



Heat Transfer° 28.

Because the analysis and computations for even so idealized

a problem as Landau's are so difficult and tedious approxi-
mate methods of solution have received considerable atten-

tiono In this regard it is surprising that Landau did

not use a perturbation method to obtain approximate solu-

tions for small values of m (see Equation (3.15)_ Many of
these approximate methods of solution follow directly

from methods used in heat-conduction problems without

melting, while others introduce new procedures particular

to melting and ablation° A comparison of some of these

methods for a particular re-entry heating rate is given. _
by Blecher_and Sutton (1961). Extensive reference lists

can be found in the work of Economus (1961), Sunderland

and Grosh (1960), Murray and Landis (1959) and Dewey
et alo (1960)o

Two of the methods for solving melting and ablation

problems that have been in the fore are the heat balance

integral method of Goodman and his coworker (1958),

(1960a) and (1960b) and the variational method of

Blot (1957), (1958), (1959a) and (1959b). Goodman's

technique is similar to the Karman-Pohlhausen method for

viscous flows and uses the integrated heat-conduction

equation with an assumed temperature distribution. Thus

the governing differential equation is not satisfied

point by point but rather on the average and the boundary

conditions are satisfied exactly° The advantage of this

method lies in its ease of application, although there

are in some cases difficulties in satisfying the imposed

boundary conditionsa This aspect of the problem is discussed

by Goodman (1960b)o
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Biotts variational method is based on the concepts

of irreversible thermodynamics and has not been applied

as much as the heat-balance integral method. Citron

(1959) and (1960) extended Blot's method to ablation

problems but due to his application of an inconsistent

constraint obtained poor agreement with the more exact

numerical solutions° This defect was corrected by

Blot and Daughaday (1962) and better results were

obtained.

It should be kept in mind that both of these methods

are approximate ones. Therefore, some lack of agreement

with exact solutions is to be expected. For the ablation

problem treated by Landau (1950) good agreement is obtained

between Landau's results and those from the two approximate

methods for times that correspond to steady-state conditions.

In the transient range after melting starts, the agreement

is not as good. Under all conditions, however, Goodman's

treatment of the problem (1958) gave better results

than Blot's. The shortcomings of the two methods are

described by Lardner (1962) and the explicit comparisons

are made therein with Landau's calculations.

Some Li_uld-Layer Effects Included.

Another mathematical model related to melting ablation

was studied by Goodman (1958b). The melt is considered to

be an incompressible viscous fluid with constant properties

that is swept off the solid by aerodynamic forces and the

solid is considered to be at its melting temperature.
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The latter together with the constant viscosity assumption,

of course, precludes any relation to glassy materials;

also solids to have a constant temperature, as assumed,

would have to have large thermal conductivities and would,

therefore, not tend to ablate°

Unfortunately, little motivation for the choices of

this model is given in the paper and its relation to

situations occuring in practice is not discussed; an

inference is only made that the model should approximate

conditions immediately after the start of melting.

Presumably, this model was chosen to show, in contra-

distinction to Landau's problem, some influence of the

liquid layer on the heat transfer and to gain some under-

standing of the dynamics of the liquid layer. However,

it should be clear that Goodman's model completely neglects

the effects of convection (heat capacity of the liquid)

so that the only influence of the liquid layer on the

heat transfer is restricted to its effect on the interface

motion. No attempt is made to Justify this assumption as

to the dominant effect of the liquid layer. In a sense,

this model essentially describes what happens in an

airstream to a layer of water on a solid under isothermal

conditions. As a matter of fact, Goodman used Just such

an experiment to indicate the same qualitative trends

which he predicted in his analysis. It may well be that

this model simulates closely conditions at the start

of melting, but this certainly needs further substantia-

tion.
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After the formulation of the general equations that
govern this model, specialization is made to the case

of a flat plate, because analytical soltulons are possible

then. Basically these are obtained by integrating across
the liquid layer to eliminate the coordinate normal to the

body and then to apply a similarity transformation which

reduces the partial differential equation to an ordinary
one. A similarity transformation is one in which the
independent are grouped together llke _=variables tx m

and explicit dependence on either variable is removed

from the differential equation and boundary conditions.

The solutions so obtained implicitly are,such that the
dependent variables at a fixed value of one of the in-

dependent variables have similar distributions in terms

of the second independent variable. Clearly, such solutions

are meaningful for restricted_physical situations.

This point will be discussed in greater detail subsequently.
Goodman obtained the melt thickness as a function of time

for several different thermal boundary conditions, but

unfortunately made no comparison of his results with

Landau's (1950). Such a comparison, if possible, should
be of some importance.

One particularly interesting result of Goodman's

analysis is the prediction that as part of the starting
phenomena the liquid moves downstream in a wave. His

simple experiment, described above, gave qualitative
support to this prediction.
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Liquid-Layer Effects at Stagnation Point.

The last of the inductive approaches to be discussed

in detail is that of Sutton (1958). This work, too_

has as its primary objective to consider the influence

of the liquid film on the heat transfer and ablation of

bodies. It is, furthermore, explicitly formulated for

glassy materials. Specific consideration is given to the

stagnation point of aerodynamic forebodies on the basis

that the heating is greatest there. Sutton further assumes

that the viscosity is a function of temperature and that

the process is quasi-stead_ i.e., that the behavior at

each instant can be determined by the time-independent

solutions at conditions appropriate to that time.

The conditions under which quasl-steady behavior is to

be expected are not delineated.

Sutton starts from the basic equations for incompres-

sible laminar boundary-layer flow, i.e. the equations

which are associated with large Reynolds numbers. The

coordinate system used for his analysis is shown in

Fig. l; it is fixed to the interface between the gaseous

boundary-layer and the molten material. It is assumed

that the rate of change of the body shape due to melting

is small. For either two-dimensional or axisymmetric

bodies the equations governing the liquid flow and heat

transfer which express, respectively, the conservation

of mass, momentum, and energy are
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(URoC) + _.mD_(VRog ) = 0 (3.38)
8Y

P
(3,39)

where _= 0 for two-dimensional bodies and _= 1 for

axisymmetric ones. The other quantities either have

been previously defined or are given on Fig. l; Cp denotes

the specific heat at constant pressure. Sutton states

that if the Reynolds number were of unit order of

magnitude the inertia terms (left side of Equation

(3.39)) could be omitted, but that the convective terms

(left side of Equation (3.41)) would, nevertheless have

to be retained if the Prandtl number of the melted layer

is large. However, he makes no mention of what Justi-

fication there would be to neglect the terms for unit

order Reynolds number that were omitted from the equations

on the assumption of large Reynolds number. No further

mention is made of what the values of the Prandtl or

Reynolds numbers are for glassy films and, therefore,

none of the simplifications indicated are made. It

is then stated that for glassy materials the variations

in density, specific heat, and thermal conductivity are

small compared to the variation of viscosity with temperature.

Therefore, they are taken to be constants.

I
I
I

I
I

I
I

I

I
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The action of the aerodynamic forces and heat transfer

I on the molten surface material is described by the boundary

conditions. At the interface, Y = O, the shear of the

I liquid layer must equal that of the gas layer
m A

I
I where_is the shear stress and the,subscript i denotes

gas-liquld interface conditions. Thetemperature of

I the gas and liquid are equal.

T(0) = Ti (3.42b)

In addition, there may be mass transfer into the gaseous

I la[er due to evaporation or pyrolysis of the liquid

film. In the former case the mass transfer is controlled

by the vapor pressure of the material and by diffusion

in the boundary layer; in the latter case the chemistry

of the material is the determining factor. The mass

transfer condition is

I

I
I

I

I
I

v(o) = - m/@ (B.42c)

where m is the mass transfer. Two additional boundary

conditions in the interior of the surface'material must

be given. For glassy materials these are that at large

enough distances from the interface the temperature is

low and, therefore, there is no flow, i.e.,
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lira T(Y) = T o llm uCY) = 0
Y_ y-_ (3.43)

It is implicit in these boundary conditions that

the material is seml-infinite.

To convert Equations (3.39) and (3.41)into ordinary

differential equations, the mangler transformation (see

Lees(1956) ) and a similarity transformation are made:

S =_ Uc(X) Ro 26 (X) dX (3.44)

[_I_)_]uoc_)_:Ix)M (_)
A stream function

Hj= (2s)½ F(_ ) (3.46)

is defined, where

Wo6 =-_ (347)
_X

Also, let

T-T O

9= @

T

(3.48)

where the asterisk denotes a reference condition, the

subscript C denotes conditions at the outer-edge of the

gas boundary layer and the subscript o denotes the interior

of the solid. Equations (3.39) and (3.41) then become,

respectively,

I

r

I

I

i

I

I

r

i

i

I
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where

I S denotes conditions at the stagnation point, and

i subscripts denote differentiation. At an axially sym-
metric stagnation point _= ½ and _= 0 for flows with

I
zero pressure gradient. For stagnation point calculations

the last term in Equation (3.50) can be neglected because

UC2_ i_.CpT*.

l

I

l

l

l

l

l

Sutton restricts further consideration to the stagna-

tion point not only because the mathematics is much

simpler, but also because the greatest heating occurs

there and the gas boundary layer is most likely to be

laminar there.

The relations between the physical variables and the

dimensioniess ones at a stagnation point are listed below

for convenience

_" -- m V (3.51)

Fk = u/uc (3.52)
b
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3

F_ =-(M,/,_)[(_+l)/#*_(Ouo/_x)_ ]

9 = (T - To)/T*

I

37 I

(@_13x) I
(3.53)

!
(3.54)

[ I9_ = -(l/n*) (6+ l)@(Su_lax)_*. q (3.55)

I
where q is the heat-transfer rate. The dimensionless

boundary conditions for Equations (3.49) and (3.50)

can be obtained by substitution of Equations (3.42)

and (3.43) into Equations (3.51) to (3.56). The melting

rate is given by lim V(Y).

I
I

I
It can be seen from Equations (3.49) and (3.50)

that stagnation-polnt ablation depends on two parameters,

the viscosity ratio which describes how the viscosity

varies with temperature and the Prandtl number at some

reference temperature,_ _*/k. Since for most liquids
P

the vlscosity-temperature variation is essentially the

same, the Prandtl number is the primary parameter. _ The

Prandtl number can be seen to be the coefficient of the

convection terms inEquati0n (3.50). Therefore, the

maximum effect of the molten film will be obtained with

high Prandtl number liquids. One could now infer that

Landau's and Goodman's work relates to liquids with

low Prandtl number. For this reason Sutton chose to

make his calculations for Pyrex since also its high-

temperature properties are available. The thermal

conductivity was taken as 1.71 x 10 -3 Btu/ft°F, the density

I

I
I
I

I

I
I

I
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1311b./ft 3, specific heat 0.29 Btu/Ib. and the viscosity-

temperature variation is approximated closely by

/_/ = 0.0672 exp (8720/T) 1'612 16/ft-sec. (3.57)

The density ratio _c/ _ was taken to be 1.37 x 10 -4

which corresponds to a Mach number of 18 at 90,000 ft.

altitude. At this altitude, the density ratio does not'

vary appreciably with Mach number. The interior temperature

of the glass, T o , is assumed to be zero. The reference

temperature was arbitrarily chosen as 4000°F. The calcu-

lations were made on a REAC differential analyzer for

several values of the interface temperature, shear stress

and mass transfer. Sutton reports that preliminary
2

calculations indicated that F_ and F_ were negligible

so that these terms were omitted from t_ momentum equation

(3.49). As mentioned above, however, these are the inertia

terms and could have been eliminated at the start on the

basis that a modified Reynolds number is small (as it

is for the problem studied). In order to apply the results

to an actual case, m i, U i, T i, qi' and_i must be matched

with gas flow boundary-layer solutions (see Scala and

Sutton (1958) for the details of the matching procedure ).

However, the calculations were made using estimates of

the aerodynamic heat-transfer rate.

A typical set of profiles is shown in Fig. 4.
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All curves, except F_ resemble exponential functions

which might be expect'@d from the form of the equations.

Note also that the thickness of the flowing region is

much less than that of the heated region. Also at the

point of no flow, F_ = 0, the value of the heat transfer

rate @_ is about 70 per cent of its value at the interface.

This means that only 70 per cent of the energy originally

transferred to the interface is conducted into the non-

flowing solid interior. In other words, about a third

of the energy is convected away by the liquid film.

Thus the presence of the film cannot be ignored.

For the conditions investigated it was found, as

expected, that the interface temperature increased monoton-

ically with interface energy transfer, but varied only

slightly with the interface shear stress and mass transfer.

A representative set of curves showing this behavior is

presented in Fig. 5.
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I

A high interface temperature markedly decreases the

viscosity of glass so that the liquid flows more readily

under the action of a given pressure gradient and shear

stress. The decrease in viscosity thus causes the surface

to recede at a faster rate as shown in Fig. 6.
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q

Hence as the heat transfer to the surface is increased

the rate, at which the surface recedes is increased as I

can be seen in Fig. 7; there the relation between heat-
H

transfer and melting rates can be seen to be nearly linear. I

_ "

_ _I _ !
8 2 - ..j_w4 i

|
t- _- II

I

o I I i I
2 4 _ 8

-/o z Oi;i '

Fig. 7.

I0

The surface shear or interphase mass transfer have negli-

gible effect on the melting rate over the range of condi-

tions studied by Sutton. The results of Fig. 7 were almost

exactly reproduced for calculations at other hypersonic

flight speeds and altitudes.

The calculations were repeated for common lime glass

whose hlgh-temperature viscosity is much less than Pyrex.

For this glass the melting rates, llm V(Y), were five
y_

times greater than for Pyrex with the same energy flux

to the interface. Thus, viscosity plays an extremely

important role in determing melting rate.
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It is of interest now to compare Sutton's results

with those of Landau wherein the liquid layer was ignored

completely. For glassy materials Landau's expression for

the melting rate can be modified so that, written in terms

of Sutton's notation, it is

_ v_l -[ _/_°'_ - _o_I (3.58)

or, nondimensionally,

lira F(¢) - (T* @_i I Pr* Ti) (3.59)

Equation (3.59) predicts a value of the melting rate

which is too small by 23 per cent for Ti= 3000°F and 28

per cent too small for T i = 4000°F. This is to be expected

since most_of the material that flows is at a lower temper-

ature than T i. Use of the liquid-solid interface temperature

rather than T i in Equation (3.59) results in larger

melting rates being predicted from the simpler analysis.

Thus Sutton has shown the essential role of the liquid

film both with regard to the heat transfer and the

melting rate. However, Sutton's analysis neglected

transient effects, which he acknowledged are of greatest

technical interest and it is limited to the stagnation-

point of a body.

A great deal of work has been done on the problem

formulated by Sutton, see, for example, Bethe and Adams

(1959) and Roberts (1959). This work attempts to simpli-

fy the computational work of Sutton by using integral
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methods (that yield only approximate solutions) and also

treats the matching of the conditions at the gas-llquid

interface in a more convenient way so that the vaporiza-

tion effects and influence of gas turbulence can be

studied more readily.

By using an inductive philosophy, i.e., choosing

specific relatively simple special problems3some of the

essential behavior of melting films has been determined.

Where_me of the limitations and conditions of applica-

bility can, in retrospect, be determined by careful

study of all these solutions, not all of them are as

yet apparent. Little or no comparisons among the various

special problems were made by the authors themselves.

It is also not certain at this point whether some other

important physical aspects have been omitted that may be

equally as important as those studied. The main results

thus far are that the liquid layer cannot be neglected

in melting ablation studies for materials with large

Prandtl numbers. This type of material is best for

melting ablation because the large viscous forces (associ-

ated with large viscosities) will prevent the molten

layer from leaving the surface before its energy of vapor-

ization has been utilized to reduce the heat energy to the

body and the low conductivity retards the heat flow into

the body and thereby yields a more efficient ablation

process.

4. Deductive Analyses.

Consideration will now be given to the deductive

analyses of the problem as represented essentially by
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the analyses of Ostrach and his coworkers (1960), (1962).

The approach in this work is to start from the most

general governing equations and then to analyse them

in detail to determine the governing dimensionless parameters

and the essential physical aspects of the problem.

Specific problems then are solved to show the influence

of the physically significant quantities on the ablation

process. In particular, the objectives of this work

were to describe the dynamic and thermal behavior of

melting layers all around a body and to find the influence,

if an_ of deceleration forces on the liquid layer.

The latter was considered because although reentering

bodies can be subject to a strong body force due to the

strong decelerations, the effect of this type of force

on the flow and heat transfer of melting layers had not

been investigated in general. In determining conditions

away from the stagnation region, it would seem particularly

important to include body force effects, because for

decelerating bodies the body force could oppose the

downstream flow of liquid.

The specific problem analyzed by Ostrach and his

coworkers is the thermal and dynamic behavior of melting

materials on the exterior of a body of revolution or

symmetric two-dimenslonal body that enters the atmosphere

at high speed and experiences a large deceleration and

surface heating. The viscosity of the liquid layer

increases from some value at the gas-liquid interface

to very large values near the body because of the
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temperature change. Density, specific heat, and thermal

conductivity are assumed constant. For suitable materials

and expected physical conditions the thickness of the

region where the vi_scosity is low enough for the ablating

material to be considered as fluid is very small compared

with the body scale.

Some additional assumptions are made in the case to

be analyzed in detail in order to show the physical

phenomena most clearly and simply. In particular the

body is assumed to be subjected to a constant deceleration,

although in an actual case the trajectory will determine

the deceleration rate. Furthermore the temperature at

the gas-liquld interface is assumed constant, and the

vaporization rate will be neglected; indications as to

how these restrictions might be relaxed for a more

realistic calculation can be found in Ostrach et al (1962).

Because the liquld-layer thickness is small compared

with the radius of curvature of the body, a system of

coordinates parallel to and normal to the gas-liquid

interface can be considered as a Cartesian coordinate

system (see Fig. 1). The interface is taken to be the

surface Y = O, and Y increases into the liquid. The

acceleration terms resulting from the unsteady motion of

the interface relative to the body are neglected but

this is considered as a steady velocity at any instant.

The resulting equations of motion for the liquid

layer are:
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Continuity :

__=9_(R_ u) +
8x

_9_ (R_v) = o
_Y

where _ = 0 for two-dimensional bodies and

axisymmetric bodies.

Momentum:

6 = 1 for

(4.3)

I Energy, neglecting thermal expansion of the liquid:

I Dis s ipation :

(4.4a)
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The transformation from stationary coordinates to

accelerating coordinates fixed in the body gives rise to

an equivalent body force _ per unit volume with the

components of equations (4.2) and (4.3), where A is the

acceleration rate of the body.

Scaling and Reduction of E_uation.

In order to compare the various terms and to determine

their relative magnitudes, all variables will be trans-

formed to dimenslonless variables in such a way that they

are of order one; the magnitudes of the terms will then

be indicated by the fixed coefficients. This is, in general,

not a trivial or automatic procedure. A clear understand-

ing of the physics of the problem is essential to do

this properly.

For X and R the clear choice of scale is the body

scale size L, so that

X = xL, R = rL

The pressure, temperature, and viscosity are scaled by

their values at the stagnation point (X = 0) interface

(Y= 0),giving

= ToT , P = Po p =/-'o

The Y coordinate is nondlmensionalized with respect to the

liquid layer thickness, 6 , which is so defined that it

makes the ablation velocity (or rate), v@o , of unit

order of magnitude. An explicit derivation of this
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scaling factor is presented by Ostrach (1962).

Y = L _ Y.

Thus

Since there exists no explicit characteristic

velocity of the liquid layer, one is obtained by equating

the magnitudes of the viscous and pressure forces.

This implicitly assumes that liquid inertia forces may

be less important. Therefore the characteristic

velocity W is found to be W = (PeL/_ o )_2 so that

U = W_/ and V = W_v

The choice of a proper time scale poses another important

problem. One time scale, viz., L/W could be obtained

from the first term of the inertia terms. However,

because it is anticipated that the viscous liquid velocities

could be small, this time scale is considered inadequate;

also the physical meaning of L/W does not appear to be

crucial to the problem. The energy equation provides

the only other means for the selection of a time scale.

As a matter of fact, this is the most important unsteady

effect, since the heating of the liquid will determine

the rate of softening and, hence, the rate of velocity

increase. Because of the anticipated slow motion, the

rate of temperature increase should be balanced by the

conduction term. In this way the time scale dis

found to be _ = (_C@L2/k)_ 2 which is a measure

of the time required for a change to be transmitted

through a layer of thickness L 6 . Thus E =(_t and

the dimensionless time, t, is like the Fourier number which

appears in classical heat conduction theory (see the footnote

on page 25 of Carslaw and jaeger (±_j).
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In terms of the new variable the equations are

_(r6u) +3(r%) = o
3x _y

_'_ t u +v

[___ + Re pr_2 ( _V + V _._.) ] (5 dr

,W
(4.5)

2

_y ay k_ayj

g= I

_- +Re Pr_ 2 (u_-xT + V_y - (_2 2x_.__) =_+ I
dY

CpT o + 2(52 k._'x'/ + _yax +

where r = R/L and the dimensionless acceleration g is

AQLIP o.

I

I
I

I
The small terms are deleted from these equations

on the assumptions that 5<< l, Re (5 2 < l, Pr >> l,

and

Pr W2

CpTo . _• i

for glassy materials at the conditions of interest.

I

I

I

I
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I
I

I
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I
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I

The analysis will be applied to the case of sudden heating

of the interface, where_ is initially indefinitely large

a_ y = 0o However, because of the small extent of the

region of softened material, at_-_ and _ are not indefinite-

ly large° Thus the assumptions yield

ay ax - g kdx2
-- f(x) (4.9)

__p= _g dr
bY _-_0 (4.10)

cDt + + v :¢_y
(4.11)

as well as the unaltered contlnuity equation (4.5).

Note that Equations (4.9) and (4.11) are coupled by

means of a viscosity-temperature relation so that, In

I genera], the problem is nonlinear and _= Pr Re62.

I

I

I

I

I

I

The fact that the main unsteady effect in the ablation

process is due to the unsteady term in the energy equation

was also mentioned after a qualitative discussion in the

stagnation-point analysis by Georgiev(1959). Because of

equation (4oi0), p is constant through the liquid layer

at any fixed station X on the body and is equal to its

value at the interface (p = p(X) = Pi(X) = p(X,0) ).

The Newtonian pressure distribution is used for p(X).

The importance of deceleration is seen to depend on the

of the parameter g(_ LA/Po) whichmagnitude represents

the ratio of the deceleration body force to the pressure

force and iis, in a sense, a reciprocal Froude number.
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From Newtonian fluid mechanics, the decelerating force

on the body Is of order Po S, where S is the projected

cross-sectional area of the body. If LS is the body

volume, and PBLS the mass (_B Is average density),mass

then the deceleration Is

Thus for a reentering ballistic vehicle, g can be very

large, whereas for a meteorite g is of order unity. The

second parameter p which appears In equation (4.11)

indicates the importance of heat convection relative to

heat conduction and depends upon shear stress (through

) as well as properties of the liquid layer.

The initial conditions of the body for the sudden

application of boundary-layer heating are determined by

the assumption of a cold glassy layer. The initial

temperature Is assumed to be zero, so that

t = 0, T = u = v = 0 (4.13)

At the interior of the body (y_), the temperature

remains low, but the melting away of the liquid layer

results In a relative velocity v_ between the interface

and the body. Therefore

T = u = 0, v = (4.14)
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I If voo< 0, the glassy liquid is being carried away; if
v_ _ 0 the liquid is accumulating. Because of symmetry

i at the stagnation point,

^ _ am az 0 (4 15)

I x = u, ex =_E'=Ox =

At the interface, the temperature and shear stress of the

I liquid are equal to those in the gas;

Aw _ = P 6_, (416)| o -

I And finally the heat balance condition is

fat " _')i
I kg _Y)i = k +0Vi H (4.17)

as a restatement of equation (4.18) given by Lees (1958).

I The convection of enthalpy by diffusion has been neglected,

since a oncatalytic wall is assumed. Also, the rad-

iation t_rms in the energy equation which are included

by Hidalgo (1959) have been neglected.

I Equation (4°9) can be integrated for u, to yield

I
I

I
I

Pa;_ =-'-Ci + fy (4.18)

= z dy -"Ci _ (4.19)

If some dependence of/U on y (and x) is assumed, equation

(ho19) will yield a solution for u, which when inserted

b. '{,
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into the continuity equation (4.5) results in a first-

order non-linear differential equation in x of the boundary

conditions with explicit dependence on y. Thus the

variation with x originates in conditions in the gaseous i

boundary layer. The integral of equation (4.5) is

e r (4.20)v-v-=-_ _l ud

vi - _ - _

However, the viscosity depends on the temperature, which

is to be fo_d as a solution of a partial differential

equation with x, y, and t as independent variables.

Because of the complicated form for the convection terms,
4_

the general solution of the energy equation is difficult.

A number of possibilities are available to resolve

this problem. Hidalgo (1959) who also wanted to find the

ablation characteristics around _ body used a K_rm_n- •

Pohlhausen type integral method to obtain approximate

solutions, but he treats only the steady problem and gives

no velocity or temperature profiles. Furthermore, although

Hidalgo's basic equations contain a deceleration term,

no discussion or calculations of its significance is given

therein. Because one of the primary objectives of

Ostrach's work was to obtain some details of the structure

of the liquid layer, it was considered desirable to

simplify the energy equation somewhat and to solve the

approximate equation in detail. The approach used by

Ostrach and his coworkers (1962) is to replace the

convection terms by a simpler expression that, however,

represents the dominant convection effects. The details

I
I

I
I

I

I
I
I

I
I
I
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follow below° Another approach, to be described sub-

sequently, is followed by one of Ostrach's students, Mr.

D. McConnell,in his doctoral thesis. This is a pertur-

bation method in the parameter _ , since for quartz,

,-_=o09_ _o__ #= O.2.

The convection term, u 8T/_X, is eliminated by

Bethe and Adams, because their analysis is limited to

the stagnation point where u = _T/_X = 0; also for

their steady-state problem they further simplify the

equation by replacing v by v_ , the ablation velocity.

Carrier (1958) describes a formal method by which the

latter simplification can be made with good accuracy.

0strach et al. (1962) made the same simplifications

(as Bethe and Adams) for their more general problem with

the following justification. In the first approximation

it is assumed that the interface temperature Ti(X,t )

varies only slowly with X. Only in the thin reglon where

T_-_T i are there appreciable flows, so that the effect

of convection in this region of nearly uniform temperature

is small. The only important effect of convection is

then the transport of the hlgh-temperature interface

toward the body as the viscous liquid layer is swept

away or evaporated, i.e., the convection along the body

is neglected relative to that normal to it. The energy

equation with these assumptions reduces to

_--_ v_ @y (4.22)

s, ,
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A discussion of the errors arising from this approximation

is given in an appendix by Ostrach and his coworkers

(1962).

The inadequacy of the steady-state approach for

application over the whole body (suggested by Bethe and

"Adams (1959) and used by Hidalgo (1959)) can be seen by

integration of equation (4.22). For steady state there

is obtained

dT d_._ e_ v@o y

B'_ = _ay] i

This equation shows that dT/dy is unbounded as y_-_,

in regions of X where v_ 0, i.e., where there is

an accumulation of liquid. Such regions can exist

and should not be precluded by the method of analysis.

At the stagnation region, v_ O, so that no difficulty

arises there. Although the energy equation (4.22)

from which this result is derived is of questionable

accuracy near the interface, it closely describes condi-

tions for large values of y. The essential unsteadiness

determined from the analysis can be explained physically

as follows: Since the gas shear and pressure forces

decrease around a body, at some position they can be

insufficient to move the molten material. With continued

heating the liquid viscosity decreases, i.e., the layer

becomes thicker and the pressure force is larger so that

the liquid can move again at a later time. This situation

is accentuated if a deceleration force is present, because

it can dominate the gas shear and pressure forces at some

65_6
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location along the body. The deceleration force acts

like gravity on a liquid layer clinging to a wall. The

liquid will, therefore, slump forward. Because of the

equivalence of conditions at all locations far back on

the body the liquid motion will approximate that of

uniform layers of fluid sliding over each other. The

continued application of heat will cause a growth in

thickness of the thermal layer on this section of the

body so that steady-state conditions are never attained,

i.e., the liquid behaves like a heated semi-lnfinlte

slab that is characterized by unsteady effects. Secondly,

the forward slumping flow from the back region and the

backward-swept flow from the front region will meet at

some intermediate station where the fluid will continue

to accumulate. (This result will be modified when the

accumulation of material is sufficient to alter the

pressure distribution.) This region will also not approach

a steady-state condition. Near the forward stagnation

point, a steady-state solution is nearly attained.

No details except results of the computations made

by Hidalgo (1959) are contained therein, but because

of the reasons cited above, those numerical results

could not have included deceleration effects. The fact

that no discussion of these effects is given therein

seems to substantiate this supposition.

Method of Solution.

The boundary conditions for calculation of the liquid

layer are not all knowna priori. At the interface there
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must be a match of temperature, shear stress, heat flow,

and mass evaporation rate. If a temperature distribution

Ti(x,t ) is assumed, all other quantities may be calculated
from solutions of gaseous boundary layer° Various methods

of making this match can be used (see Scala and Sutton (1958),
for example); in addition to the description of some of

these methods contained in the previously mentioned refer-

ences, a comprehensive discussion of this problem is pre-

sented by Lees(1958)° In the present analysis the gas

boundary-layer characteristics of Cohen and Reshotko (1956)

were used for the assumed Newtonian pressure distribution,

and hence the calculations (but not the analysis) are

restricted to the class of bodies for which those similarity

solutions apply. A representative two-dimensional body of

this class is shown by 0strach et alo (1960); for axisym-

metric bodies (see Figure 8 for the one studied by Ostrach

and his coworkers (1962)) the Mangler transformation is

applied to permit use of the results of Cohen and Reshotko.

Since this procedure of using exact similar gas solutions is

rather lengthy and involved and is not as convenient as
direct use of the tables of Cohen and Reshotko_ which

can be used for any body shape, the details will be
omitted herein.

Onemay expect on solving the liquid-layer flow and

heat-transfer equations that a discrepancy will exist in

the heat balance for each assumed interface temperature dis-

tribution. From several assumptions of the interface temper-

ature distribution Ti(X,t ) it should be possible to find a
distribution by interpolation for which the heat balance
conditions are satisfied. This procedure could be applied at
each instant of time starting with the value at X=0 and working
downstream by integration of the continuity equation. For
the problem considered in this _aper, of sudde_ application
of the hot gas, a selection of T(S,0, E) = 4000_F(and T_=l.0)
was chosen in order to permit a solution which will indicate
the main kinematic features of the liquid glass layer as
a whole and to show time and x variation of the heat flux
parameter _ _ . It was also assumed that

i
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there is no evaporation, that is,

l v i = V(x,o,t) = 0

The energy equation is

!

!

I _I

58.

integrated directly to give

(4.23)

for the assumption that both T i and v_ are independent

of time but v@o is a function of x. These assumptions are

more realistic for t large rather than initially (t small).

To complete the solution, there is now required an

explicit form for the dependence ofp on y. For this

purpose, we assume

P =2Z/i exp(ay + by 2)

The functions "a" and "b" are determined from the assumed

dependence of viscosity on the temperature;

J =/UI(T/TI )-n

I If we differentiate,

__I/d__ = a =-n d_m_F_3 / T i - -nT'

,:i; _ 6 5 9
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From equation (4.23) the required gradient T' is found

for identifying a:

-_l _y 1 _ T' 1 _ (#v2_rt-) 2-_2 2 t/4]Ti i =5 v erfc _ e v_

(4.24)

I
I

I

The quadratic term is determined by the temperature i
at large values of y, where equation (4.23) is approxi-

ma ted by

T 2 exp (-y2/4t +_v_ y/2 - _2v_ t/4) I

Ti _ Y/_F{-- _ 2v2t3/2/Y I

The dominating factor in determining the rate of decrease

of the temperatUre at large y is

exp (_y2/4t )

|Hence we choose b = n/4t, from which

=/Ui exp[-n(T'y - y2/4t)] (4.25) I

with this viscosity relation, equation (4.19) may be

explicity integrated to

exp n (YT' - _t) (_i [

u = - f

n(T' - y/2t)

+ i

° _]
nT' (i _- y/.2tT')2 -

1}9 (4.26)
2n(y/2 VT- T'.%) 2

I

I
I

I
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I where the ab_revlations a_e

I @ _ 2Z (I -_zeZ erfc Z)

Also, by integration of the continuity equation,

I e-ny2/ 4t _%/r 6 enY T' f f r

V - V_ = , ,, .IL ..... y +
n2r 6 SX((T,_ y/2t)2_.yi [

I +2tT (9- I)] V7 _ ( 7)

I n(T' - y/2t) J /-lJ J

I and At the interface v = v i, Z = -_ T'-----Zi, @ = 9 i,

r£ 9 9 i-II
"l- Va_- n-_r6 8X t/UIT,2 _ [n-_+ 2tT'__it)l +_i

I (4.28)
dff = x(_)o, =

= constant, so that

(4.26a)

- i,)I+ 2tT_ ( 9090

(4,28a)

i At the stagnation point r = x,

0

ui(x = o) = x [9i- _, _ (_)

!

|
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The limiting steady-state case is obtained when t is large,

Z i = - _ T' is large, and

l

|

o-I - - 1.5 1.5 I
Z = nt(T' - y/2t)= - _ !

l
At this point the problem is completely solved for

dependence of u, v, and T on x, y, and t, provided the I

dependence of the boundary parameters, v_ , T', T i,
|

vi, and _i on the variables X and t is found. For our |

approximate solution, v i = 0, but in general the temperature I

balance (T i = @g) will determine the vapor pressure of !

the components of the liquid glass and the diffusion

rate through the boundary layer (see Bethe and Adams

(1959) and Baron (1956)) will depend on the external

conditions and the wall temperature. Similarly the

shear stress and heat transfer will depend on T i and

external conditions. This leaves T i and vos to be

found from equations (4.24) and (4.28).

Numerical Procedure.

To solve for the parameters v_ and T' which are

required before u, v, and T can be calculated, equations

(4.24) and (4.28) must be solved simultaneously. To

facilitate the discussion, the differential equation

(_.28) is written in the form

v_- v I =7
(4.29)

where B and C are functions of T' and t. On differentiation,
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_ +_ _ + c + _ dxj+

62.

(4.30)

from which, together with Equation (4.24), the nonlinearity

In the particular problem solved (the firstis apparent.

approximation where Ti = To'

dv_
it was found that the coefficient of- was a small

quantity; at x = O, the conditions f i = 0 cause the

coefficient to vanish there. Once again, then the problem

is of the singular-perturbation type with, however, the

additional complication that the coefficient of the

highest derivative term is variable. Therefore, it can

be immediately concluded that dveo /dx must be very

large near the stagnation point (x = 0). The usual

integration procedure was therefore found to be unsuit-

able in that successive approximations to the solution

at a point frequently failed to converge. Equation

(4.30) was therefore solved for the term v_ by writing

the equation with numerical" evaluation of the derivative

|

!

from the argument itself;

dv_ + E ,_i-2 i-2= D + E d--_--- D= _._ v_ + si-lv_ -I +

sivl) (4.31)

where the definitions of D and E are obtained by comparing

Equations (4.30) and (4.31) and S i denote weighting factors.
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This method of solution encountered difficulty in

an intermediate region for certain cases of large time

and deceleration; the possible cause of this failure

will be discussed subsequently. In those cases it was

possible to begin the solution at x--_@@, leaving an

intermediate region with the solution undetermined.

large x, it was assumed

dv_

V_=dx -0.

For

Results.

In the example calculated the ablating material was I

taken to be Pyrex and the conditions assumed were (similar

to Sutton's (1959)): Flight _ach number, 18.0; altitude, i
90,000 feet; L = Ro = 1 foot; = 131 lb/ft3; k = 1._lxl0 -3

Btu/(ft)(°F)(sec); or = 0.29 Btu/(lb)(°F);_o (at i
4000°F) = 0.07 slug/_ft)(sec). Body shape is shown in

Figure 8. From these it is found that Pr = 383; Re = l
79.6; _= 2.510x10-3;_= 0.1929; W = 1.370 ft/sec; F =

3.446x10 -3 ft/sec. For Pyrex under the conditions

of the problem a value of n = 8 was assumed. The I

gasious boundary layer adjoining the liquid layer was

assumed to be laminar throughout its entire extent, l

(See Figure 8 on following page)
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I 4

| _,

0

I I I I I I I I I I I
I _ 3 ÷ 5. . _z 7 8 9 /o /I

51_oes of AI,I=f;.S_a_
Flg. 8.

Development of the normal interface (ablation)

velocity, v_, along the body forino deceleration force

is shown In Figure 9._
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Recall v_O indicates thinning of the molten layer.

Thus, fluid leaves the stagnation region and tends to

accumulate downstream, because the shear and pressure

forces decrease away from the stagnation point. At some

later time, as mentioned previously, the thicker layer

results in a greater pressure force and liquid moves

rearward in a wave pattern. Therefore, away from the

stagnation point there exists an accumulation of molten

material into a slight bump that is followed by ablation

as the bump moves down stream as a kind of single wave.

Note that no wave motion is predicted during the initial

ablation period. The corresponding interface normal

temperature gradient (heat flux) is shown in Figure lO.

With increasing time the temperature gradient decreases

Z

Q.
IZ

.10

"°_0 2 4. 6 8 Io 12

_|3TftMEE ALONC_ 80GY _URF'ACg , X, ,r--'=='=_,.--.,..-,

_. I0. In+efface -F¢,,_rev-a-/-u.v-e _r.",_i¢*_" dk'hr',b_'l'io,. No d_ce./ev-=J_o,.
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from a relatively high uniform value, as might be expected

from the initial sudden application of T = 1 and relatively

small convection, to a lower steady-state value near the

stagnation region. The temperature gradients for very

short times cannot be accurate, because the gas boundary

layer, as a result of thickening, will provide gradients

which decrease as X increases, whereas the figure shows

constant values. Steady-state conditions in the stagna-

tion region are approximately attained at t = 29 (correspond-

ing to 4.1 sec) at which time ablation is proceeding at

the rate of v_--1.25 (corresponding to removal of material

at the rate of 0.052 in./sec). At all times the most

severe thermal load is imposed at the forward stagnation

point. This is easily understood to occur because (I)

the thickness of the gaseous boundary layer is a minimum

near the stagnation point and (2) there is a large neg-

ative normal velocity, which results from the flowing

away of material and which reduces the thickness of the

thermal layer.

Details of the structure of the viscous layer for

no deceleration are shown in Figure ll.
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All temperature profiles are about the same for short

time, but with increaslng time the stagnatlon-polnt

profile approaches a steady-state curve, whereas the

other_ are all nearly the same as for unsteady heating

of a slab. (After X = O, the next profile is selected

for such a value of X that v_= O; therefore u i is nearly

a maximum there.)

Deceleration of the body gives rise to changes in

the behavior of the liquid layer as shown by comparison

of figures 12 to 14 with previouslymentioned results.

The normal interface velocity at the stagnation point

is reduced 6 percent for maximum deceleration. Farther

back the calculations break down in a region where the

normal interface velocity vc@exhiblts large gradients.

The inadequacy of the equations used herein to describe

the condition in this region probably arises from the

failure of the boundary-layer assumption (i.e. that

h/L_l) because of the accumulation of fluid and

thickening of the liquid layer. The results of the

present calculations show this region of large positive

normal velocity vce, which results from the fluid arriving

from the forward section by boundary-layer drag and from

slumping forward of material from the back end because

of deceleration; at this location the forces balance.

The accumulation of liquid into a bump may be directly

inferred from the normal interface velocity (vc_)

curves of Figures 12(a) and 12(b). Deflnite values of

v_ and the growth of the bump size cannot be given

because of the failure of the backwards and forwards

solutions to coalesce, but order of magnitude
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interpretation of the curves indicates the growth rate

to be comparable with ablation rate at the stagnation

region. Calculations could be made downstream of the

critical region because of the small influence of the

derivative and the resulting local character of the solution.
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The failure of the solutions obtained by forward

and rearward integration to match in the region of liquid

accumulation is not surprising. In general, two asympto-

tic solutions (here for small and large dlstances from

the stagnation point) cannot be Joined wltho_careful

analysis. Sometimes the matching is further complicated

because of the occurence of a singularity in the inter-

mediate region due to the omission of terms in the

asymptotic equations which are significant there. To

match the asymptotic solutions properly in such a region

the analytic form of the solution there must be found.

For the present problem there appears to be a distinct

possibility of finding the solution of the Navler-Stokes

equations in this accumulation region because the inertia

terms should be negligible there. Further consideration

is being given to this point.

The interface temperature gradient approaches very

small values at the bump because of the accumulation of

the hottest liquid there. The temperature gradient at

the stagnation point is reduced only 3.5 percent for

maximum deceleration under the condltions of the calcula-

tions.

Both the velocity and temperature profiles for

high deceleration rates show clearly a dissimilarity of

shape at various locations; there is even a case of flow

reversal which results from the opposing effects of surface

shear and body force. Such deceleration effects are

qualitatively described by Cheng (1958).

6 7"7
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A large accumulation of material in a bump will

probably not be realized in a real situation because it

would be torn off by the airstream if it grows

sufficiently large.

The heat flow from the gas to the liquid was calcu-

lated at the stagnation point to be 53,200 Btu/(ft2)(sec)

by the method of Fay and Riddell (1958) and the results

of Lees(1958) for qi/qo for a hemisphere were used to

estimate the value elsewhere. If vaporization is neglected,

the temperature gradient in the liquid at the interface

is then 311,000 ° F/ft. On a dimensionless basis, the

stagnation-point temperature gradient approaches the

limit

This value and those at several other locations are shown

in Figure 13. Thus, the heat load estimated from the

liquid layer herein is too high. This error follows

from having taken too high a value for the interface

temperature.

•,: 3  ,ooo6 j  : o. 755 |

!

The temperature gradient of the liquid at the inter-

face will depend on the ablation rate v_@, which, through

the viscosity, will depend strongly on the temperature.

Thus an assumption of a lower temperature will greatly

reduce the interface temperature gradient and heat

flow; closer agreement with other results (Bethe and

Adams(1950))can then be expected.
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For a very short time, the correction required is

much greater; the corrected temperature will, therefore,

rise from a low initial value to the final equilibrium

value.

The general deductlve-type analysis of Ostrach and his

coworkers (1960) (1962) has thus led to the following

results:

1. Flow, temperature, and heat transfer in the

liquid layer depend on the deceleration parameter g =

A _L/P O, the heat convection parameter _ = Pr Re _ 2,

and the body shape in addition to those quantities

already found for the steady-state condition at the

stagnation point.

2. A steady-state solution is possible only in the

forward part of the body where v_O. On the aft part

an unsteady solution is required.

3. Similarity solutions are not possible; the velocity

and temperature profiles vary radically in shape from

one portion of the body to another and at different

instants of time.

4. The heaviest heat load and ablation rate occur

at the stagnation point; deceleration affects these

values slightly.

5. An accumulation of fluid occurs in the region

where body, shear, and pressure forces areapproximately

balanced. This might cause a substantial change in the

body shape for small bodies where the fluid will be blown

off a shoulder rather than flow off the back end.
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Thus limitations of the various studies are made clear

and new physical phenomena are described by the general-
type of analysis.

Numerous specific problems, in accordance with the

inductlve-viewpoint, were studied concurrently with

the development of the general analysis described above.

In particular, Fanucci and Lew (1959), Hidalgo (1959)
and Tellep (1959) all were concerned with conditions

away from the stagnation point. Fanucci and Lew used an

integral approach and assumed steady flows. The form

of their assumed velocity profiles precluded the occur-

rence of flow accumulation and back flow. Hidalgo also

used an integral approach for steady flows and although

he originally included a deceleration term in his equations
gave it no further attention. Tellep also treated the

problem as a steady one and chose a very special con-

figuration so that similarity solutions could be obtained.

Clearly none of the unusual features of the problem can

be described by similar solutions. Recall how dissimilar

the velocity and temperature profiles are from 0strach's

solutions. Thus, the significance of all this work, if

any, is questionalbe in view of the assumption of steady

flow and the special types of solutions that do not

permit accumulation and backflow. Certainly, the rela-

tion of these special problems is unknown.

In a similar way Georgiev (1959) and Chert and Allen
(1962) attempted to find the unsteady characteristics of

ablation. Georgiev restricted his consideration to the

stagnation region and concluded, in agreement with

Ostrach and his coworkers, that the unsteady effects

68O
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there are not too important. Cheng and Allen introduced

only the unsteadiness due to time-dependent gas flow

velocities, but neglected unsteady thermal effects in

their stagnation point analysis. This work is essentially

a generalization of Sutton's analysis, but no Justifica-

tion is given for neglecting the unsteady thermal effects.

Cheng and Allen find that acceleration and deceleration

effects are very important.

The work of Ostrach and his coworkers has recently

been extended by one of his students, D. McConnell, in

a doctoral thesis. Since some of the simplifications

of the former work are related to conditions at larger

times, the initial period of melting is studied in more

detail by applying the previously-mentioned perturbation

in the small parameter_that indicates relativemethod

convection and conduction effects. In order to match

interface conditions more easily McConnell specifies

the interface heat flux in terms of a gas heat-transfer

coefficient rather than an interface temperature. Finally,

McConnell considers a spherical body rather than an

aerodynamic one as was the case in all previous work.

Interest in the tektite problem motivated the study of

this shape.

The governing equations and boundary-conditions for

McConnell's analysis are the same as Ostrach's, i.e.,

Equations (4.5), (4.9), to (4.11), and (4.13) to (4.16).

Equation (4.17), however, is now written as, neglecting

vaporization,



Heat Transfer. 74.

k__y_i = h(X) (Taw - Ti) (4.17a)

where h(X) is the heat-transfer coefficient (assumed

known from the gas flow) and Taw is the adiabatic wall
temperature. The body is again assumed to semi-infinlte,

but the shear stress_(X) and h(X) appropriate for spheres
are now used.

The fact that pis of the order of 0.I for materials
of interest suggests a perturbation expansion in powers

of_ for the solution of the problem. Since the limiting

case of_ equal to zero corresponds to pure heat conduction

which is relatively easy to describe and which is the
dominant state of affairs at the onset of the ablation

process, such a solution should give the desired type of

information for short times to supplement the essentially

quasi-steady solutions of Ostrach and his coworkers.

Accordingly the expansions

are substituted into the governing equations and the l

power-law viscosity-temperature relation to give I

_y_(_o _ ) - f(x (/1 _ + _o _y- + |

,B _)-_-"+/"i_ +-'X'2 + " " • = o

, .GE; 2
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= 0

The boundary-condltions are satisfied by the zeroth-order

solutions and homogeneous conditions are imposed on the

higher-order ones.

I Thus the zeroth-order (in B) problem is

a(rUo) a(rVo) = o
| ax + BY .....

TO _2T o

a_ ay_

/Zs O = To "n

I with

T = u = 0 at y--_@_

I u = v = T = 0 at t = 0

aty=O

I

I
G_S



Heat Transfer. 76.

as

The zeroth-order temperature is immediately written

To = erfc (Y/2_/-_) - exp(hy + h2t) erfc (Y/2_/-_ + h2t)

From this, the viscosity relation, and the conditions

on Uo, the equation for uo can be solved to give

!
Uo [= erfc(m/2_) - exp(hm+h2t) erfc(m/2_+ --

....... h_t)] _m + !
erfe(m/2"_) - exp(hm+h2t/ erfc(m/2"_+h'_) _dm

!

F((_,e) = erfc¢-exp(2_0 + 0 2) erfc (¢ + 0) I
From the continuity equation there is then obtained I

_Crt_' 3"2 "y/2"_- C._'.s _ 4(_i)' {½_ 8f#_
v_ =- _8-L-_._-At / / |(_F_' d_ d_-------=-- tl I" F n d_
.._- _ oJ oo J (_ _ r _j _ d_ - I

But

_xF _ O_xoF __FF @=_ [2(¢+0) exp(2 ¢O+O 2 ) erfc(_ _+o)_ (_#_ I
•e_C-_]_ _ -C__ o_- __C_+_ I

.[I a i _iI_ L2(_+9) -4(_+O) 3 + "''] - I

I
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so that

__F exp(- _ 2
8x _ )

Also

29 exp(2 _9 +

so that

02)erfc(¢+ _,4Q

_ 2 _2 2 exp (-_'2))o,,p(-
on the basis that _O or y/2_t; For a particular

%b_

y this places a lower bound on t for which the expansions •

are valid. Combination of the two derivatives of F yields

so that v can be written as
O

v o = -8 (rf)lt3/2r o -iY/2_Ft-_ f_Fnd _ d_- #(r %i)l.-r t
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Now I

All the integrals have either of two forms, so define

and the zeroth-order solutions .can be summarized as I

T o = erfc (Y/2_t-) - exp(_y +_2 t) erfc (Y/2_-t+ _-)

u o - 4ft k2(Y/2_r_j _ +2 _i_kl(Y/2B_tj _ I
v o : -0 (rf)/ t 3/2 k4(Y/2 _ _t- 4 (r _i t k3(Y/2"_, _/t-) I
+ 4f _Zt

2

+

[ k2CY/'#'_, _'_ - k 2 (0,_- k3CY/2"V_', _r_ )]

_%#w[ ]_ k 1 (Y/2 _ $'V_-) - k 1 ( O, _'_)

where primes denote differentiation with respect to x.

688
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The first-order correction functions are found

from

J _ (ru I ) _(rv I )

x + ,,_,y =0

I _ BUo _ _Ul

1_-_-Tro _- _o

!

!

!

B T1 82T1 9 TOBT- = -_y " (Uo_- + Vo )

-_ 1 + n TITo -(n+l) = 0

with the initial and boundary conditions

vI - o,_Tl/ay --o aty - o;

T I = u I -- v I = 0 at t = O.

T I = 0, u I = 0 at y =_ ;

The nonhomogeneous term in the energy equation is a

I product the exp(- 4t) and terms involving they2/of

integrals. The exponential behavior in y dominates the

I integral variations so the latter are replaced by their

limiting values. Then the Fourier Cosine transform can

I be used to solve for T I. The other functions follow
from the remaining equations so that

I TI =-(i/_) [ G(x,t)] exp (-y2/4t)

r k2(_'g) " k2(O'@)" k3(_'@) +

l r ki(t'_)- _I(°'9 _-2
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•

where

(o,o)

G(x,t)_ 8 (rf)'r ko(co,@) + 2 _ k 3(co,@) +

(k2/O,O) + k3(.,O) t 3/2 + _ _i _'k_(O,O) t

The second-order correction for the stagnation region

was also found but the details will be omitted here.

The perturbation analysis, Just presented, describes

conditions from the initial state onward. The analysis

of Ostrach et al. essentlally moves backward in time from

an anticipated steady-state condition. It is, therefore,

desirable to compare the results of the two schemes.

Thus a quasl-steady analysis similar to Ostrach's will

now be made with the exception that the interface heat

flux will be specified. In this way a relation between

the heat flux and interface temperature is immediately

obtained (Equation (4.17a)) and the interface matching

is simplified thereby and, furthermore, the interface

temperature can be variable which is more realistic.

The argument for simplifying the convection terms has

to be modified from that given by Ostrach and his coworkers,

but it can still be Justified. Thus the problem is defined

by

6_8
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_T +_v_ _ -_

I v.--_ _-_I ° (_,t_) _ "d.

I _ +_(_,w-Ti)=0 for y- 0 t_O

I

| T (y,O)= o

A closed-form solution can be obtained by Laplace transforms

I with 2 _t(X) =_V,p , VlZ.,

_e erfcy - 2@_t + _t

l y - 2_t _)II -2((_ -_I exp[ _(y - 2_t) + _2t]erfc-2,,_-) "2"T_ . h

I This solution is valid for all times for _Joth positive and

negative values of#-(i.e., v_ ). Furthermore if_ = 0

I the conduction solution is obtained. If_(_ 0 the asymptotic
temperature has the form

I

I

I
I

Tasym _ _ - 2_.exp (2_y)

This corresponds to the exponential temperature variation

often assumed and it indicates an interface temperature.

If this interface expression is substituted into the

equation for v@@ there results

689
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(2OC)asyTn = jg( _ )n

r (_n)2

(rf)' 2
r (2_n)5

i i +

82.

This then is the tlme-independent value of v_ that could go

together with the boundary functions _(x), f(x), and

_i(x) to form a steady system.

McConnell carried out calculations for the same

specific case treated by Ostrach and his coworkers so

that the results of the two studies can be compared. On

Figure 15 is shown the stagnatlon-point interface temper-

ature computed by both McConnell's perturbation and

quasi-steady solutions; the interface temperature assumed

by Ostrach and his coworkers is also shown therein.

:_evc,_+/,.o_de_' toev+',..,,,'b_._',.',

--X--X-- ,s_e,.,,..,4o,.'dev"_,.,,-+u,,-_,o-_o,.,

Fix. 15.

I

I
i

I
I

I
I
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I The latter Is higher than either of McConnell's results
but thls is because 0strach did not match the heat flux

at the interface to obtain the lower value. Note also
I that the quasl-steady solution predl_ts a lower interface

temperature than the perturbation solution. The reason

I for thls can be more clearly seen after consideration

of Figure 16 which presents a comparison of the stagnation-

I point ablation velocltles predicted by all the analyses.

i I I I I i // /
J_i I I I I " .-..I-- -- .-------I - -- " "1

e /

, !t!!
I Fourier Nu_t,e,'j 4 _ 5 1 "z

Flg. 16.

I As expected, the values predicted by Ostrach et al. (1962)

I are larger than any of McConnell's values. Ostrach's
values follow, of course, from hls higher interface

i temperature. The quasl-steady analysis predlcts a larger

!

I
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value than the perturbation analysis. This can be explained

by consideration of the asymptotic interface temperature

relation T i = _I(_-2_), where recall 2_Z0o If the

asymptotic value of the interface temperature is specified

then both T i and _ will be overestlmated,, for small times;

thls leads to an overestimate for 12_ for small times.

The same applles to 0strach_s results. In the present

analysls h specified and an overestimate of 12_I

i |

is

leads to an underestimatehl of TIo The quasl-steady analysis

overestimates _e& I because it overestimates the small

time effect of 12_I on the temperature distribution.

The perturbation solutlonshows that for small time the

temperature is essentially that due to conduction; whereas

the quasl-steady solution immediately takes account of

any motion that exists. Figure 16 shows, in addition,

that the zeroth and first order velocities tend to diverge

at about t = 22.0 so that the perturbation analysis can

be considered to be valid until that time° Figure 15

shows that at t = 22 the interface temperature appears

to be leveling off at about the asymptotic value predicted

by the quasl-steady analysis. Thus it can be concluded

that the quasl-steady analysis reasonably describes the

long-tlme behavior of the ablation process.

The ablation velocities around a spherical body are

shown on Figure 17. These calculations were stopped at

the point of separation of the gas boundary layer as

predicted by Meksyn (1948). For these particular

calculations, the gas boundary-layer shear and pressure

gradient were calculated from Meksyn. It is seen that

even for early times, the rate of change with respect
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I to tangential distance, _vao/_x, is of unit order of

magnitude. This is in accord with Ostrach's results

(Figs. 3, 5 and 6 (1962)) and contradicts those of

I Adams (1961) who stated that _v_ /ax _O.It can

further be :een that a 250 percent change in g(g =I
-0.51 to g -1.30) results in only a 20 percent change

in stagnation point ablation velocity.

I
I 0 ' 9 --0.51

I I ! I..-_.,,.ol
o,ol I v-f"T_:; I

i I l
o
O 0,4 o.t i._ 1.6

I _O 3=1"30

I
I ,.°oo., o., ,:. ,.,

i Fig. 17.

I Ostrach also showed that stagnation conditions are not
strongly affected by deceleration effects. Note also that

indicated by time solutions

i no wave motion is the early

!

!
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and this too is in accord with Ostrach's results. Finall_y,

the initial increase in stagnation-polnt radius of curva-

ture is indicated here as predicted by Chapman.

A concurrent experimental study was made by McConnell

in a vertical wind-tunnel with heated gas flow upward and

spherical tar-balls used as the test models. In this way

the gravitational force simulated deceleration forces

and by varying the gas flow rate the parameter g can be

made to take on a range of values. Photographs of the

melting process were taken and the temperature at the

bottom of the tar layer (which covered a wooden sphere)

was measured. Recession of the stagnation point was

measured from the photographs.

The photographs show the significance of the parameter

g; for larger g the melt accumulation is closer to the

stagnation region and the surface waves can be seen.

The ablation velocity was determined from the

measurements and the results were compared on Figures 18

and 19 with the theory. Figure 18 shows results for
1 I!

layer of tar; good agreement with perturbation

solutions to t_7. For a long time it was not close

enough to quasl-steady because the layer was all melted.

There, the tests were repeated with ½" layer of tar.

Now we can see that fort _ 28 agreement with the

quasi-steady solution is good. Similar temperature

comparisons were made.
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